The Relationship between the Amisulpride-Induced Hyperprolactinemia and Taq1A Polymorphism of the Dopamine D2 Receptor Gene in Schizophrenia Patients

조현병 환자에서 아미설프라이드에 의한 고프로락틴혈증과 DRD2 유전자 Taq1A 다형성의 연관성

  • Kim, Jae Jun (Department of Psychiatry, Catholic University of Daegu School of Medicine) ;
  • Seo, Min Jae (Department of Psychiatry, Maya Hospital) ;
  • Choi, Tae Young (Department of Psychiatry, Catholic University of Daegu School of Medicine) ;
  • Lee, Jong Hun (Department of Psychiatry, Catholic University of Daegu School of Medicine)
  • 김재준 (대구가톨릭대학교 의과대학 정신건강의학교실) ;
  • 서민재 (마야병원 정신건강의학과) ;
  • 최태영 (대구가톨릭대학교 의과대학 정신건강의학교실) ;
  • 이종훈 (대구가톨릭대학교 의과대학 정신건강의학교실)
  • Received : 2016.10.06
  • Accepted : 2017.01.16
  • Published : 2017.02.28

Abstract

Objectives This study was aimed to investigate the association between amisulpride-induced hyperprolactinemia and the Taq1A polymorphism in the D2 dopamine receptor gene (DRD2) in schizophrenic patients. Methods The plasma concentrations of prolactin were measured before and after treatment with amisulpride in one hundred and twenty-five schizophrenic patients. The effect of the Taq1A variants of the DRD2 on the risk of amisulpride-induced hyperprolactinemia was the main the outcome measure. The genotyping for Taq1A (rs1800497) polymorphism was performed using TaqMan single nucleotide polymorphism (SNP) genotyping assay. Results There was a significant difference between the prolactin level at baseline and the 6th week after treatment with amisulpride in all the subjects. However, there were no significant correlations between ΔProlactin (the difference between prolactin level at baseline and the 6th week after treatment) and the Taq1A genotypes. Conclusions This is the first study to investigate the-correlations between the Taq1A polymorphism and the amisulpride-induced hyperprolactinemia in Korean schizophrenic patients. The current results suggested the further large-scale researches on various SNPs in the DRD2 gene will establish clear goals and provide answers to the unanswered questions described in this study.

Keywords

References

  1. Rubin RT. Prolactin and schizophrenia. In: Meltzer HY, editor. Psychopharmacology: the third generation of progress. New York: Raven Press;1987. p.803-808.
  2. Halbreich U, Kinon BJ, Gilmore JA, Kahn LS. Elevated prolactin levels in patients with schizophrenia: mechanisms and related adverse effects. Psychoneuroendocrinology 2003;28 Suppl 1:53-67. https://doi.org/10.1016/S0306-4530(02)00112-9
  3. Clemens JA, Roush ME, Fuller RW. Evidence that serotonin neurons stimulate secretion of prolaction releasing factor. Life Sci 1978;22:2209-2213. https://doi.org/10.1016/0024-3205(78)90573-8
  4. Claghorn J, Honigfeld G, Abuzzahab FS Sr, Wang R, Steinbook R, Tuason V, et al. The risks and benefits of clozapine versus chlorpromazine. J Clin Psychopharmacol 1987;7:377-384.
  5. Wirshing DA, Erhart SM, Pierre JM, Boyd JA. Nonextrapyramidal side effects of novel antipsychotics. Curr Opin Psychiatry 2000;13:45-50. https://doi.org/10.1097/00001504-200001000-00008
  6. Gracious BL. Atypical antipsychotics and hyperprolactinemia. Psychopharm Rev 2000;35:1-3.
  7. Leong DA, Frawley LS, Neill JD. Neuroendocrine control of prolactin secretion. Annu Rev Physiol 1983;45:109-127. https://doi.org/10.1146/annurev.ph.45.030183.000545
  8. Nordstrom AL, Farde L. Plasma prolactin and central D2 receptor occupancy in antipsychotic drug-treated patients. J Clin Psychopharmacol 1998;18:305-310. https://doi.org/10.1097/00004714-199808000-00010
  9. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000;157:514-520. https://doi.org/10.1176/appi.ajp.157.4.514
  10. Behravan J, Hemayatkar M, Toufani H, Abdollahian E. Linkage and association of DRD2 gene TaqI polymorphism with schizophrenia in an Iranian population. Arch Iran Med 2008;11:252-256.
  11. Laakso A, Pohjalainen T, Bergman J, Kajander J, Haaparanta M, Solin O, et al. The A1 allele of the human D2 dopamine receptor gene is associated with increased activity of striatal L-amino acid decarboxylase in healthy subjects. Pharmacogenet Genomics 2005;15:387-391. https://doi.org/10.1097/01213011-200506000-00003
  12. Munafo MR, Johnstone EC, Welsh KI, Walton RT. Association between the DRD2 gene Taq1A (C32806T) polymorphism and alcohol consumption in social drinkers. Pharmacogenomics J 2005;5:96-101. https://doi.org/10.1038/sj.tpj.6500294
  13. Guzey C, Scordo MG, Spina E, Landsem VM, Spigset O. Antipsychotic-induced extrapyramidal symptoms in patients with schizophrenia: associations with dopamine and serotonin receptor and transporter polymorphisms. Eur J Clin Pharmacol 2007;63:233-241. https://doi.org/10.1007/s00228-006-0234-8
  14. Nisoli E, Brunani A, Borgomainerio E, Tonello C, Dioni L, Briscini L, et al. D2 dopamine receptor (DRD2) gene Taq1A polymorphism and the eating-related psychological traits in eating disorders (anorexia nervosa and bulimia) and obesity. Eat Weight Disord 2007;12:91-96. https://doi.org/10.1007/BF03327583
  15. Dubertret C, Gouya L, Hanoun N, Deybach JC, Ades J, Hamon M, et al. The 3' region of the DRD2 gene is involved in genetic susceptibility to schizophrenia. Schizophr Res 2004;67:75-85. https://doi.org/10.1016/S0920-9964(03)00220-2
  16. Thompson J, Thomas N, Singleton A, Piggott M, Lloyd S, Perry EK, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics 1997;7:479-484. https://doi.org/10.1097/00008571-199712000-00006
  17. Noble EP, Blum K, Ritchie T, Montgomery A, Sheridan PJ. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch Gen Psychiatry 1991;48:648-654. https://doi.org/10.1001/archpsyc.1991.01810310066012
  18. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK, et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 1998;3:256-260. https://doi.org/10.1038/sj.mp.4000350
  19. Berman SM, Noble EP. Reduced visuospatial performance in children with the D2 dopamine receptor A1 allele. Behav Genet 1995;25:45-58. https://doi.org/10.1007/BF02197241
  20. Noble EP, Berman SM, Ozkaragoz TZ, Ritchie T. Prolonged P300 latency in children with the D2 dopamine receptor A1 allele. Am J Hum Genet 1994;54:658-668.
  21. Noble EP, Gottschalk LA, Fallon JH, Ritchie TL, Wu JC. D2 dopamine receptor polymorphism and brain regional glucose metabolism. Am J Med Genet 1997;74:162-166. https://doi.org/10.1002/(SICI)1096-8628(19970418)74:2<162::AID-AJMG9>3.0.CO;2-W
  22. Guyon A, Assouly-Besse F, Biala G, Puech AJ, Thiebot MH. Potentiation by low doses of selected neuroleptics of food-induced conditioned place preference in rats. Psychopharmacology (Berl) 1993;110:460-466. https://doi.org/10.1007/BF02244653
  23. Puech AJ, Rioux P, Poncelet M, Brochet D, Chermat R, Simon P. Pharmacological properties of new antipsychotic agents: use of animal models. Neuropharmacology 1981;20:1279-1284.
  24. Perrault G, Depoortere R, Morel E, Sanger DJ, Scatton B. Psychopharmacological profile of amisulpride: an antipsychotic drug with presynaptic D2/D3 dopamine receptor antagonist activity and limbic selectivity. J Pharmacol Exp Ther 1997;280:73-82.
  25. Coulouvrat C, Dondey-Nouvel L. Safety of amisulpride (Solian): a review of 11 clinical studies. Int Clin Psychopharmacol 1999;14:209-218. https://doi.org/10.1097/00004850-199907000-00002
  26. Lecrubier Y. Is amisulpride an 'atypical' atypical antipsychotic agent? Int Clin Psychopharmacol 2000;15 Suppl 4:S21-S26.
  27. Rosenzweig P, Canal M, Patat A, Bergougnan L, Zieleniuk I, Bianchetti G. A review of the pharmacokinetics, tolerability and pharmacodynamics of amisulpride in healthy volunteers. Hum Psychopharmacol 2002;17:1-13. https://doi.org/10.1002/hup.320
  28. McKeage K, Plosker GL. Amisulpride: a review of its use in the management of schizophrenia. CNS Drugs 2004;18:933-956. https://doi.org/10.2165/00023210-200418130-00007
  29. Haro JM, Edgell ET, Novick D, Alonso J, Kennedy L, Jones PB, et al. Effectiveness of antipsychotic treatment for schizophrenia: 6-month results of the Pan-European Schizophrenia Outpatient Health Outcomes (SOHO) study. Acta Psychiatr Scand 2005;111:220-231. https://doi.org/10.1111/j.1600-0447.2004.00450.x
  30. Schlosser R, Grunder G, Anghelescu I, Hillert A, Ewald-Grunder S, Hiemke C, et al. Long-term effects of the substituted benzamide derivative amisulpride on baseline and stimulated prolactin levels. Neuropsychobiology 2002;46:33-40. https://doi.org/10.1159/000063574
  31. Fric M, Laux G. [Prolactin levels and symptoms of hyperprolactinemia in patients treated with amisulpride, risperidone, olanzapine and quetiapine] Psychiatr Prax 2003;30(Suppl 2):97-101. https://doi.org/10.1055/s-2003-39764
  32. Grunder G, Wetzel H, Schlosser R, Anghelescu I, Hillert A, Lange K, et al. Neuroendocrine response to antipsychotics: effects of drug type and gender. Biol Psychiatry 1999;45:89-97. https://doi.org/10.1016/S0006-3223(98)00125-5
  33. Kopecek M, Bares M, Svarc J, Dockery C, Horacek J. Hyperprolactinemia after low dose of amisulpride. Neuro Endocrinol Lett 2004;25:419-422.
  34. Wetzel H, Wiesner J, Hiemke C, Benkert O. Acute antagonism of dopamine D2-like receptors by amisulpride: effects on hormone secretion in healthy volunteers. J Psychiatr Res 1994;28:461-473. https://doi.org/10.1016/0022-3956(94)90004-3
  35. Lee SJ, Lee JH, Jung SW, Koo BH, Choi TY, Lee KH. A 6-week, randomized, multicentre, open-label study comparing efficacy and tolerability of amisulpride at a starting dose of 400 mg/day versus 800 mg/day in patients with acute exacerbations of schizophrenia. Clin Drug Investig 2012;32:735-745. https://doi.org/10.1007/s40261-012-0002-8
  36. Kinon BJ, Gilmore JA, Liu H, Halbreich UM. Hyperprolactinemia in response to antipsychotic drugs: characterization across comparative clinical trials. Psychoneuroendocrinology 2003;28 Suppl 2:69-82.
  37. Kuruvilla A, Peedicayil J, Srikrishna G, Kuruvilla K, Kanagasabapathy AS. A study of serum prolactin levels in schizophrenia: comparison of males and females. Clin Exp Pharmacol Physiol 1992;19:603-606. https://doi.org/10.1111/j.1440-1681.1992.tb00511.x
  38. Vekemans M, Robyn C. Influence of age on serum prolactin levels in women and men. Br Med J 1975;4:738-739. https://doi.org/10.1136/bmj.4.5999.738
  39. Aklillu E, Kalow W, Endrenyi L, Harper P, Miura J, Ozdemir V. CYP2D6 and DRD2 genes differentially impact pharmacodynamic sensitivity and time course of prolactin response to perphenazine. Pharmacogenet Genomics 2007;17:989-993. https://doi.org/10.1097/FPC.0b013e3282f01aa3
  40. Mihara K, Kondo T, Suzuki A, Yasui N, Nagashima U, Ono S, et al. Prolactin response to nemonapride, a selective antagonist for D2 like dopamine receptors, in schizophrenic patients in relation to Taq1A polymorphism of DRD2 gene. Psychopharmacology (Berl) 2000;149:246-250. https://doi.org/10.1007/s002139900364
  41. Mihara K, Suzuki A, Kondo T, Yasui-Furukori N, Ono S, Otani K, et al. Relationship between Taq1 A dopamine D2 receptor (DRD2) polymorphism and prolactin response to bromperidol. Am J Med Genet 2001;105:271-274. https://doi.org/10.1002/ajmg.1303
  42. Sawamura K, Suzuki Y, Fukui N, Sugai T, Someya T. Gender differences in prolactin elevation induced by olanzapine in Japanese drugnaive schizophrenic patients. Prog Neuropsychopharmacol Biol Psychiatry 2006;30:1511-1514. https://doi.org/10.1016/j.pnpbp.2006.05.011
  43. Wudarsky M, Nicolson R, Hamburger SD, Spechler L, Gochman P, Bedwell J, et al. Elevated prolactin in pediatric patients on typical and atypical antipsychotics. J Child Adolesc Psychopharmacol 1999;9:239-245. https://doi.org/10.1089/cap.1999.9.239
  44. Nix DE, Gallicano K. Design and data analysis in drug interaction studies. In: Piscitelli SC, Rodvold KA, Pai MP, editors. Drug Interactions in Infectious Diseases. New York: Springer;2011. p.655-682.
  45. Chae JH, Yoon SJ, Pae CU, Jun TY, Park YJ, Bahk WM, et al. Comparison of risperidone and olanzapine use in the treatment of inpatients with schizophrenia. Korean J Psychopharmacol 2000;11:247-253.
  46. Chung YC, Park KH, Kim DJ, Park KY. Prolactin Response to the administration of risperidone and haloperidol in patients with schizophrenia and other psychotic disorder. Korean J Psychopharmacol 2000;11:343-349.
  47. Lu ML, Shen WW, Chen CH. Time course of the changes in antipsychotic-induced hyperprolactinemia following the switch to aripiprazole. Prog Neuropsychopharmacol Biol Psychiatry 2008;32:1978-1981. https://doi.org/10.1016/j.pnpbp.2008.09.016
  48. Kapur S, Mamo D. Half a century of antipsychotics and still a central role for dopamine D2 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:1081-1090. https://doi.org/10.1016/j.pnpbp.2003.09.004
  49. Rasmussen DD, Liu JH, Wolf PL, Yen SS. Gonadotropin-releasing hormone neurosecretion in the human hypothalamus: in vitro regulation by dopamine. J Clin Endocrinol Metab 1986;62:479-483. https://doi.org/10.1210/jcem-62-3-479
  50. Taylor AE, McCourt B, Martin KA, Anderson EJ, Adams JM, Schoenfeld D, et al. Determinants of abnormal gonadotropin secretion in clinically defined women with polycystic ovary syndrome. J Clin Endocrinol Metab 1997;82:2248-2256.
  51. Yen SSC. Studies of the role of dopamine in the control of prolactin and gonadotropin secretion in humans. In: Central regulation of the endocrine system. New York: Pleum Press;1979. p.387-416.
  52. Santos AD, Prado RA, Melo MB, Melo MR, Longui CA. Structural evaluation of type 3 dopaminergic receptor gene (DRD3) in chronic anovulatory women. Genet Mol Res 2008;7:140-151. https://doi.org/10.4238/vol7-1gmr397
  53. Quested DJ, Whale R, Sharpley AL, McGavin CL, Crossland N, Harrison PJ, et al. Allelic variation in the 5-HT2C receptor (HTR2C) and functional responses to the 5-HT2C receptor agonist, m-chlorophenylpiperazine. Psychopharmacology (Berl) 1999;144:306-307. https://doi.org/10.1007/s002130051010