DOI QR코드

DOI QR Code

Consumer Trend Platform Development for Combination Analysis of Structured and Unstructured Big Data

정형 비정형 빅데이터의 융합분석을 위한 소비 트랜드 플랫폼 개발

  • Kim, Sunghyun (K-ICT Big Data Center, Korea Information Society Agency) ;
  • Chang, Sokho (Big Data Center, BC Card) ;
  • Lee, Sangwon (Department of Computer Software Engineering, Wonkwang University)
  • 김성현 (한국정보화진흥원 K-ICT빅데이터센터) ;
  • 장석호 (비씨카드 빅데이터센터) ;
  • 이상원 (원광대학교 컴퓨터소프트웨어공학과)
  • Received : 2017.04.08
  • Accepted : 2017.06.20
  • Published : 2017.06.28

Abstract

Data is the most important asset in the financial sector. On average, 71 percent of financial institutions generate competitive advantage over data analysis. In particular, in the card industry, the card transaction data is widely used in the development of merchant information, economic fluctuations, and information services by analyzing patterns of consumer behavior and preference trends of all customers. However, creation of new value through fusion of data is insufficient. This study introduces the analysis and forecasting of consumption trends of credit card companies which convergently analyzed the social data and the sales data of the company's own. BC Card developed an algorithm for linking card and social data with trend profiling, and developed a visualization system for analysis contents. In order to verify the performance, BC card analyzed the trends related to 'Six Pocket' and conducted th pilot marketing campaign. As a result, they increased marketing multiplier by 40~100%. This study has implications for creating a methodology and case for analyzing the convergence of structured and unstructured data analysis that have been done separately in the past. This will provide useful implications for future trends not only in card industry but also in other industries.

데이터는 금융업에서 가장 중요한 자산으로 평균 71%의 금융기관이 데이터 분석으로 경쟁우위를 창출하고 있다. 특히, 금융업 중 카드 업종에서는 전체 고객의 소비행위 패턴 및 선호 트랜드 분석에 의한 가맹점 정보, 경기 변동 상황, 상권정보 제공 서비스 개발에 빅데이터가 폭 넓게 활용되고 있지만 데이터의 융복합을 통한 새로운 가치 창출은 미흡한 편이다. 본 연구는 소셜 데이터와 BC 카드 매출데이터의 융합 분석한 신용카드 회사의 '소비 트랜드 분석 및 예측' 사례를 다룬다. BC카드는 소셜 데이터를 활용한 트랜드 프로파일링 작업과 카드 및 소셜 데이터를 연계하는 알고리즘 개발 및 분석 내용 시각화 시스템을 개발하였다. 성과 검증을 위해 '식스포켓' 관련 트랜드를 분석하고 마케팅을 시행해 본 결과 40~100%이상의 마케팅 승수 증대 효과를 거두었다. 본 연구는 그동안 개별적으로 이루어져 오던 정형, 비정형데이터 분석을 융합하여 분석하는 방법론과 사례를 창출한 의의가 있으며 이는 앞으로 카드 업종 뿐만 아니라 타 업종에도 변화하는 트랜드에 유용하게 대응할 수 있는 시사점을 제공할 것이다.

Keywords

References

  1. D. Laney, "3D Data Management: Controlling Data Volume, Velocity and Variety", Gartner, 2001.
  2. NRI, "The Advent of Big Data Era", Nomura Research Institute, 2012.
  3. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers, "Big Data: The Next Frontier for Innovation, Competition, and Productivity", McKinsey Global Institute, 2011.
  4. MSIP, "Big Data Industry Development Strategy", The Republic of Korea Government, 2013.
  5. N. Ashish, V. Dan, "Worldwide Big Data Technology and Services Forecast 2015-2019", IDC, 2015.
  6. NIA, 2016 Korean Big Data Market Review, National Information Society Agency, 2017.
  7. J. S. Hwang, S. H. Kim, and H. Lee, "Breaking the Myths of the IT Productivity Paradox", KSII Transactions on Internet and Information Systems, Vol. 9, No. 1, pp.466-482, 2015. https://doi.org/10.3837/tiis.2015.01.029
  8. K. I. Kim, "The Impact of several management tools and techniques adoption on strong small business enterprises'Performance", Journal of IT Convergence Society for SMB, Vol. 6, No. 3, pp.7-12, 2016.
  9. K. I. Kim, "A Model of the influence of IMS operation on organizational performance", Journal of IT Convergence Society for SMB, Vol. 6, No. 1, pp.1-5, 2016.
  10. S. H. Kim, S. Y. Jang, and G. O. Jang, "Information Technology Adoption and Success Research Review in Small and Medium-sized Enterprises", Journal of Digital Convergence, Vol. 11, No. 3, pp.199-207, 2013. https://doi.org/10.14400/JDPM.2013.11.3.199
  11. S. H. Kim, and S. Y. Jang, "Determinants of Software-as-a-Service Adoption Intention Among Small and Medium-sized Korean Firms", Korean Management Science Review, Vol. 30, No. 2, pp.11-30, 2013. https://doi.org/10.7737/KMSR.2013.30.2.011
  12. Y. S. Jeong, "U-healthcare Service Management Scheme for Big Data of Patient Information", Journal of IT Convergence Society for SMB, Vol. 5, No. 1, pp.1-6, 2015.
  13. K. S. Shin, H.J. Park, S. H. Kim, Big Data Adoption Strategy in Finantial Industry, National Information Society Agency, 2016.
  14. D. Turner, M. Schroeck, and R. Shockley, Analytics: The Real-World Use of Big Data in Financial Services, IBM(R) Institute for Business Value, 2016.
  15. NIA, 2015 Korean Big Data Market Review, National Information Society Agency, 2016.
  16. S. H. Lee, and D. W. Lee, "FinTech-Conversions of Finance Industry based on ICT", Journal of the Korea Convergence Society, Vol. 6, No. 3, pp.97-102, 2015. https://doi.org/10.15207/JKCS.2015.6.3.097
  17. R. Baik, and J. H. Ryu, "An Analysis of Convergence Relation on Economic Activity with Credit cards in Korea and China & A Development of the Algorithm on economic trend Estimation", Journal of the Korea Convergence Society, Vol. 7, No. 4, pp.9-17, 2016. https://doi.org/10.15207/JKCS.2016.7.4.009
  18. K.G. Min, http://www.econovill.com/news/articleView.html?idxno=298758, Economic Review Article, 2016.
  19. E. J. Noh, http://www.focus.kr/view.php?key=2016113000161540599, Focus Nesws Article, 2016
  20. H. Chen, R. H. L. Chiang, and V. C. Storey, "Business Intelligence and Analytics: From Big Data to Big Impact," MIS Quartly. Vol. 36, No. 4, pp. 1165-1188, 2012.
  21. H. Baars, and H. G. Kemper, "Management Support with Structured and Unstructured Data- an Integrated Business Intelligence Framework," Information Systems Management, Vol. 25, No. 2, pp. 132-148, 2008. https://doi.org/10.1080/10580530801941058
  22. A. Syed, K. Gillela, and C. Venugopal, "The Future Revolution on Big Data," . International Journal of Advanced Research in Computer and Communication Engineering, Vol. 2, No. 6, pp. 2446-2451, 2013.
  23. A. Gandomi, and M. Haider, "Beyond the Hype: Big Data Concepts, Methods, and Analytics," International Journal of Information Managemen, Vol. 35, No. 2, pp. 137-144, 2015. https://doi.org/10.1016/j.ijinfomgt.2014.10.007
  24. K. S. Shin, S. M. Chai, H. J. Park, N.O. Jo, S. A. Shin, and S. H. Kim, "Development of a Big Data Capability Assessment Model", Journal of Information Technology and Architecture, vol.13, no.2, pp. 271-280, 2016.
  25. S. W. Lee and S. H. Kim, "Finding Industries for Big Data Usage on the Basis of AHP", Journal of Digital Convergence, Vol. 14, No. 7, pp. 21-27. 2016. https://doi.org/10.14400/JDC.2016.14.7.21
  26. S. H. Kim, S. B. Park, and Y. G. Lee, "A Development of a Evaluation Framework for Public Sector ICT Adoption: Focused on Big Data, Cloud, Internet of Things, Journal of Information Technology and Architecture, Vol. 12, No. 3, pp. 419-428, 2015.
  27. Y. Jung, M. Suk, C. Kim, "A study on the success factors of Bigdata through an analysis of introduction effect of Bigdata", Journal of Digital Convergence, Vol 12, No. 11, pp. 241-248, 2014. https://doi.org/10.14400/JDC.2014.12.11.241
  28. K. S. Noh, "Educational Policy Proposals through Analysis of the Perception of Bigdata for University Students", Journal of Digital Convergence, Vol. 13, No. 11, pp.25-33, 2015. https://doi.org/10.14400/JDC.2015.13.11.25
  29. Y. M. Kim, "Changes and Strategies of the Government Service Paradigm through Using Big Data: Focused on Disaster Safety Management in Seoul City", Journal of Digital Convergence, Vol. 15, No. 2, pp.59-65, 2016. https://doi.org/10.14400/JDC.2017.15.2.59
  30. M. J. Choi, and K. S. Noh, "Exploratory Study on Crime Prevention based on Bigdata Convergence - Through Case Studies of Seongnam City -", Journal of Digital Convergence, Vol. 14, No. 11, pp.125-133 2016. https://doi.org/10.14400/JDC.2016.14.11.125
  31. K. S. Noh, "A Study on Utilization Strategy of Bigdata for Local Administration by Analyzing Cases", Journal of Digital Convergence 12(1), 2014.
  32. K. S. Noh, S. Park, "An Exploratory Study on Application Plan of Bigdata to Manufacturing Execution System", Journal of Digital Convergence, Vol. 12, No. 1, 2014.
  33. J. S. Kim, and W. S. Cho, "Data analysis of 4M data in small and medium enterprises", Journal of the Korean Data & Information Science Society, Vol. 26, No. 5, pp.1117-1128, 2015. https://doi.org/10.7465/jkdi.2015.26.5.1117
  34. J. W. Gu, J. H. Lee, M. S. Chung, and J. Y. Lee, "Electric Vehicle Technology Trends Forecast Research Using the Paper and Patent Data", Journal of Digital Convergence, Vol. 15, No. 2, pp.165-172, 2017. https://doi.org/10.14400/JDC.2017.15.2.165
  35. H. W. Park, and K. H. Choi, "Doing Social Big Data Analytics: A Reflection on Research Question, Data format, and Statistical Test-Convergent Aspects", Journal of Digital Convergence, Vol. 14, No. 12, pp.591-597, 2016. https://doi.org/10.14400/JDC.2016.14.12.591
  36. S. D. Yoo, K. D. Choi, and S. Y. Shin, "Characterizing Business Strategy in a New Ecosystem of Big Data", Journal of Digital Convergence, Vol. 12, No. 4, pp.1-9, 2014. https://doi.org/10.14400/JDC.2014.12.4.1
  37. S. H. Namn, and K. S. Noh, "A Study on the Effective Approaches to Big Data Planning", Journal of Digital Convergence, Vol. 13, No. 1, pp.227-235, 2015. https://doi.org/10.14400/JDC.2015.13.1.227