DOI QR코드

DOI QR Code

Evaluation of Crack Propagation and Post-cracking Hinge-type Behavior in the Flexural Response of Steel Fiber Reinforced Concrete

  • Gali, Sahith (Department of Civil Engineering, Indian Institute of Technology Hyderabad) ;
  • Subramaniam, Kolluru V.L. (Department of Civil Engineering, Indian Institute of Technology Hyderabad)
  • 투고 : 2016.07.28
  • 심사 : 2017.03.23
  • 발행 : 2017.06.30

초록

An experimental evaluation of crack propagation and post-cracking behavior in steel fiber reinforced concrete (SFRC) beams, using full-field displacements obtained from the digital image correlation technique is presented. Surface displacements and strains during the fracture test of notched SFRC beams with volume fractions ($V_f$) of steel fibers equal to 0.5 and 0.75% are analyzed. An analysis procedure for determining the crack opening width over the depth of the beam during crack propagation in the flexure test is presented. The crack opening width is established as a function of the crack tip opening displacement and the residual flexural strength of SFRC beams. The softening in the post-peak load response is associated with the rapid surface crack propagation for small increases in crack tip opening displacement. The load recovery in the flexural response of SFRC is associated with a hinge-type behavior in the beam. For the stress gradient produced by flexure, the hinge is established before load recovery is initiated. The resistance provided by the fibers to the opening of the hinge produces the load recovery in the flexural response.

키워드

참고문헌

  1. 544.1R-96. (2006). Report on fiber reinforced concrete. Farmington Hills, MI: American Concrete Institute.
  2. 544.8R-16. (2016). Report on indirect method to obtain stress-strain response of fiber-reinforced concrete (FRC), ACI Committee 544 ACI 544.8R. Farmington Hills, MI: American Concrete Institute.
  3. Abdallah, S., Fan, M., Zhou, X., & Le Geyt, S. (2016). Anchorage effects of various steel fibre architectures for concrete reinforcement. International Journal of Concrete Structures and Materials, 10(3), 325-335. https://doi.org/10.1007/s40069-016-0148-5
  4. Adjrad, A., Bouafia, Y., Kachi, M. S., & Ghazi, F. (2016). Prediction of the rupture of circular sections of reinforced concrete and fiber reinforced concrete. International Journal of Concrete Structures and Materials, 10(3), 373-381. https://doi.org/10.1007/s40069-016-0137-8
  5. Ali-Ahmad, M., Subramaniam, K., & Ghosn, M. (2006). Experimental investigation and fracture analysis of debonding between concrete and FRP sheets. Journal of engineering mechanics, 132(9), 914-923. https://doi.org/10.1061/(ASCE)0733-9399(2006)132:9(914)
  6. Armelin, H. S., & Banthia, N. (1997). Predicting the flexural postcracking performance of steel fiber reinforced concrete from the pullout of single fibers. ACI Materials Journal, 94, 18-31.
  7. Barros, J. A., & Figueiras, J. A. (1999). Flexural behavior of SFRC: Testing and modeling. Journal of Materials in Civil Engineering, 11(4), 331-339. https://doi.org/10.1061/(ASCE)0899-1561(1999)11:4(331)
  8. Bruck, H. A., McNeill, S. R., Sutton, M. A., & Peters, W. H. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Experimental Mechanics, 29(3), 261-267. https://doi.org/10.1007/BF02321405
  9. Carloni, C., & Subramaniam, K. V. (2010). Direct determination of cohesive stress transfer during debonding of FRP from concrete. Composite Structures, 93(1), 184-192. https://doi.org/10.1016/j.compstruct.2010.05.024
  10. Carloni, C., & Subramaniam, K. V. (2013). Investigation of subcritical fatigue crack growth in FRP/concrete cohesive interface using digital image analysis. Composites Part B Engineering, 51, 35-43. https://doi.org/10.1016/j.compositesb.2013.02.015
  11. Carloni, C., Subramaniam, K. V., Savoia, M., & Mazzotti, C. (2012). Experimental determination of FRP-concrete cohesive interface properties under fatigue loading. Composite Structures, 94(4), 1288-1296. https://doi.org/10.1016/j.compstruct.2011.10.026
  12. Di Prisco, M., Plizzari, G., & Vandewalle, L. (2009). Fibre reinforced concrete: new design perspectives. Materials and Structures, 42(9), 1261-1281. https://doi.org/10.1617/s11527-009-9529-4
  13. EN 14651:2005 (E). (2005). Test method for metallic fibre concrete. Measuring the flxural tensile strength (limit of proportionality (LOP), residual).
  14. Gettu, R., Gardner, D. R., Saldivar, H., & Barragan, B. E. (2005). Study of the distribution and orientation of fibers in SFRC specimens. Materials and Structures, 38(1), 31-37. https://doi.org/10.1007/BF02480572
  15. Gopalaratnam, V. S., & Gettu, R. (1995). On the characterization of flexural toughness in fiber reinforced concretes. Cement & Concrete Composites, 17(3), 239-254. https://doi.org/10.1016/0958-9465(95)99506-O
  16. Gopalaratnam, V. S., Shah, S. P., Batson, G., Criswell, M., Ramakishnan, V., & Wecharatana, M. (1991). Fracture toughness of fiber reinforced concrete. Materials Journal, 88(4), 339-353.
  17. Hillerborg, A., Modeer, M., & Petersson, P. E. (1976). Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research, 6(6), 773-781. https://doi.org/10.1016/0008-8846(76)90007-7
  18. IS 1727. (1967). Methods of test for pozzolanic materials [CED 2: Civil Engineering], Bureau of Indian Standards, New Delhi, India.
  19. IS 3812-1. (2003). Specification for pulverized fuel ash, part 1: For use as pozzolana in cement, cement mortar and concrete [CED 2: Cement and concrete], Bureau of Indian Standards, New Delhi, India.
  20. Islam, M. S., & Alam, S. (2013). Principal component and multiple regression analysis for steel fiber reinforced concrete (SFRC) beams. International Journal of Concrete Structures and Materials, 7(4), 303-317. https://doi.org/10.1007/s40069-013-0059-7
  21. Laranjeira, F., Aguado, A., Molins, C., Grunewald, S., Walraven, J., & Cavalaro, S. (2012). Framework to predict the orientation of fibers in FRC: A novel philosophy. Cement and Concrete Research, 42(6), 752-768. https://doi.org/10.1016/j.cemconres.2012.02.013
  22. Michels, J., Christen, R., & Waldmann, D. (2013). Experimental and numerical investigation on postcracking behavior of steel fiber reinforced concrete. Engineering Fracture Mechanics, 98, 326-349. https://doi.org/10.1016/j.engfracmech.2012.11.004
  23. Olesen, J. F. (2001). Fictitious crack propagation in fiber-reinforced concrete beams. Journal of Engineering Mechanics, 127(3), 272-280. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:3(272)
  24. Pan, B., Qian, K., Xie, H., & Asundi, A. (2009). Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review. Measurement Science & Technology, 20(6), 062001. https://doi.org/10.1088/0957-0233/20/6/062001
  25. Robins, P., Austin, S., Chandler, J., & Jones, P. (2001). Flexural strain and crack width measurement of steel-fibre-reinforced concrete by optical grid and electrical gauge methods. Cement and Concrete Research, 31(5), 719-729. https://doi.org/10.1016/S0008-8846(01)00465-3
  26. Schreier, H. W., & Sutton, M. A. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental Mechanics, 42(3), 303-310. https://doi.org/10.1007/BF02410987
  27. Shah, S. P., & Ouyang, C. (1991). Mechanical behavior of fiber-reinforced cement-based composites. Journal of the American Ceramic Society, 74(11), 2727-2953. https://doi.org/10.1111/j.1151-2916.1991.tb06836.x
  28. Sorensen, C., Berge, E., & Nikolaisen, E. B. (2014). Investigation of fiber distribution in concrete batches discharged from ready-mix truck. International Journal of Concrete Structures and Materials, 8(4), 279-287. https://doi.org/10.1007/s40069-014-0083-2
  29. Stang, H., & Olesen, J. F. (1998). On the interpretation of bending tests on FRC-materials. In H. Mihashi & K. Rokugo (Eds.), Fracture Mechanics of Concrete Structures (Vol. 1). Freiburg: Aedificatio Publishers.
  30. Subramaniam, K. V., Carloni, C., & Nobile, L. (2007). Width effect in the interface fracture during shear debonding of FRP sheets from concrete. Engineering Fracture Mechanics, 74(4), 578-594. https://doi.org/10.1016/j.engfracmech.2006.09.002
  31. Subramaniam, K. V., Suraj, N., & Sahith, G. (2015). "Investigation of crack propagation in macro-synthetic fiber reinforced concrete." Proc., 5th International. Conf. on Construction Materials: Performance, Innovations and Structural Implications, 19-21 Aug.,Whistler.
  32. Sutton, M. A., McNeill, S. R., Jang, J., & Babai, M. (1988). Effects of subpixel image restoration on digital correlation error estimates. Optical Engineering, 27(10), 271070.
  33. Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and Vision Computing, 1(3), 133-139. https://doi.org/10.1016/0262-8856(83)90064-1
  34. Tadepalli, P. R., Dhonde, H. B., Mo, Y. L., & Hsu, T. T. (2015). Shear strength of prestressed steel fiber concrete I-beams. International Journal of Concrete Structures and Materials, 9(3), 267-281. https://doi.org/10.1007/s40069-015-0109-4
  35. UNI 11039-2:2003. (2003). Concrete reinforced with steel fibers-test method for the determination of early crack strength and ductility indexes.

피인용 문헌

  1. Influence of Steel Fibers on Fracture Energy and Shear Behavior of SCC vol.30, pp.11, 2017, https://doi.org/10.1061/(asce)mt.1943-5533.0002496
  2. Probabilistic Analysis for Strain-Hardening Behavior of High-Performance Fiber-Reinforced Concrete vol.12, pp.15, 2017, https://doi.org/10.3390/ma12152399
  3. Fracture behaviour analysis of the full‐graded concrete based on digital image correlation and acoustic emission technique vol.43, pp.6, 2017, https://doi.org/10.1111/ffe.13222
  4. Avalanches during flexure of early-age steel fiber reinforced concrete beams vol.53, pp.4, 2020, https://doi.org/10.1617/s11527-020-01520-w
  5. Embedded smart PZT-based sensor for internal damage detection in concrete under applied compression vol.163, pp.None, 2020, https://doi.org/10.1016/j.measurement.2020.108018
  6. Crack Propagation Analysis of Synthetic vs. Steel vs. Hybrid Fibre-Reinforced Concrete Beams Using Digital Image Correlation Technique vol.14, pp.1, 2020, https://doi.org/10.1186/s40069-020-00427-8
  7. Crack Detection and Localisation in Steel-Fibre-Reinforced Self-Compacting Concrete Using Triaxial Accelerometers vol.21, pp.6, 2017, https://doi.org/10.3390/s21062044
  8. Cohesive stress and fiber pullout behavior in fracture response of concrete with steel and macropolypropylene hybrid fiber blends vol.44, pp.11, 2017, https://doi.org/10.1111/ffe.13543
  9. Experimental Study on Evaluation of Replacing Minimum Web Reinforcement with Discrete Fibers in RC Deep Beams vol.9, pp.11, 2017, https://doi.org/10.3390/fib9110073