DOI QR코드

DOI QR Code

마그네시아-인산칼륨 시멘트에 대한 인산염 비 및 물-결합재비의 영향

Effect of Phosphate-to-binder and Water-to-binder Ratio on Magnesia-potassium Phosphate Cement

  • 이경호 (경기대학교 일반대학원 건축공학과) ;
  • 윤현섭 (경기대학교 일반대학원 건축공학과) ;
  • 양근혁 (경기대학교 플랜트.건축공학과)
  • Lee, Kyung-Ho (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yoon, Hyun-Sub (Dept. of Architectural Engineering, Kyonggi University Graduate School) ;
  • Yang, Keun-Hyeok (Dept. of Plant.Architectural Engineering, Kyonggi University)
  • 투고 : 2016.12.14
  • 심사 : 2017.03.15
  • 발행 : 2017.06.30

초록

본 연구는 물-결합재비(water-to-binder ratio, W/B) 및 인산염-결합재비(phosphate-to-binder ratio, P/B)가 마그네시아-인산칼륨 시멘트(magnesium-potassium phosphate cement, MKPC) 모르타르의 플로, 응결시간, 압축강도발현 및 pH 변화에 미치는 영향성에 대한 평가이다. MKPC 모르타르의 P/B가 0.3 및 0.5일 때 W/B 범위 20~40%에 대하여 10 배합의 모르타르 실험을 실시하였으며, X-선 회절 분석(X-ray diffraction, XRD), 전자현미경(scanning electron microscope, SEM) 및 수은압입법(mercury intrusion porosimetry, MIP) 분석을 위해 MKPC의 반응생성물 및 미세공극분포를 평가하였다. 실험결과, MKPC 모르타르의 플로 및 응결시간은 P/B의 증가에 따라 감소하였으며, P/B가 0.3에서 0.5로 증가함에 따라 종결시간은 약 24% 감소하였다. MKPC 모르타르의 초기 압축강도 발현 기울기의 경우 콘크리트 구조기준에서 제시하는 시멘트 콘크리트 대비 높은 수준에 있었다. 재령 28일의 압축강도 30 MPa 이상 및 pH 9.0 이하를 만족하기 위해 MKPC 모르타르의 P/B 및 W/B는 각각 0.5이상 및 30% 이하가 추천된다. MKPC의 반응생성물인 스트루바이트(struvite)-K의 결정은 MKPC의 P/B 및 W/B가 높을수록 증가하였는데, 이로 인해 거대 모세관 공극은 감소하였다.

This study examined the effect of water-to-binder ratio (W/B) and phosphate-to-binder ratio (P/B) on the flow, setting time, compressive strength development, and pH variation of magnesium-potassium phosphate composites, MKPC mortars. Ten mortars mixtures were prepared with the W/B varying from 20% to 40% at each P/B of 0.3 or 0.5. The hydration products and microstructural pore distribution of the MKPC pastes were investigated using X-ray diffraction (XRD), scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP). The initial flow and setting time of MKPC mortars tended to decrease with an increase of P/B, indicating that the final setting time was shortened by approximately 24% when P/B increased from 0.3 to 0.5. The slope of the early-strength development measured in the MKPC mortars was considerably higher than that of cement concrete specified in code provisions. For obtaining a relatively good 28-day strength (above 30 MPa) and a near neutral pH (below 9.0) in MKPC mortars, the P/B and W/B need to be selected as 0.5 and 30%, respectively. The strubite-K crystal increased with the increases of P/B and W/B, which leads to the decrease of the macro-capillary pores.

키워드

참고문헌

  1. Oh, K. C., Ryu, K. J., Bea, T. H., Kim, D. H., and Bae, J. J., "Inspection of Chemical Attacked Sewage Concrete Structures", Magazine of the Korea Concrete Institute, Vol. 18, No. 2, 2006, pp. 22-26. https://doi.org/10.22636/MKCI.2006.18.2.22
  2. Kim, D. G., Kim, S. S., Lee, S. T., and Kim, J. P., "The Method of Durability Increase on the Concrete Structure Considering Chemical Attack", Magazine of the Korea Concrete Institute, Vol. 18, No. 4, 2006, pp. 49-56. https://doi.org/10.22636/MKCI.2006.18.4.49
  3. Choi, W. C., Concrete: Crack, Deterioration and Measures, DongHwa Technology Publishing Company, 2010.
  4. Mindess, S., Young J. F., and Darwin, D., Concrete-Second Edition, Prentices Hall, 2002.
  5. Lee, H. G., Ann, K. Y., and Sim, J. S., "Experimental Study on Performance of MgO-based Patching Materials for Rapid Repair of Concrete Pavement", International Journal of Highway Engineering, Vol. 18, No. 1, 2016, pp. 43-55. https://doi.org/10.7855/IJHE.2016.18.1.043
  6. Ribeiro, D. V., and Morelli, M. R., "Influence of the Addition of Grinding Dust to a Magnesium Phosphate Cement Matrix", Construction and Building Materials, Vol. 23, No. 9, 2009, pp. 3094-3102. https://doi.org/10.1016/j.conbuildmat.2009.03.013
  7. Yang, Q., Zhu, B., and Wu X., "Characteristics and Durability Test of Magnesium Phosphate Cement-based Material for Rapid Repair of Concrete", Materials and Structures, Vol. 33, No. 4, 2000, pp. 229-234. https://doi.org/10.1007/BF02479332
  8. Sugama, T., and Kukacka, L. E., "Characteristics of Magnesium Polyphosphate Cement Derived from Ammonium Polyphosphate Solutions", Cement and Concrete Research, Vol. 13, No. 4, 1983, pp. 499-506. https://doi.org/10.1016/0008-8846(83)90008-X
  9. Ma, H., Xu, B., Liu, J., Pei, H., and Li, Z., "Effect of Water Content, Magnesia-to-Phosphate Molar Ratio and Age on pore Structure, Strength and Permeability of Magnesium Potassium Phosphate Cement Paste", Materials and Design, Vol. 64, 2014, pp. 497-502. https://doi.org/10.1016/j.matdes.2014.07.073
  10. Yang, N., Shi, C., Yang, J., and Chang, Y., "Research Progresses in Magnesium Phosphate Cement-based Materials", Journal of Materials in Civil Engineering, Vol. 26, No. 10, 2014, pp. 1-8. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000778
  11. Ahn, M. Y., "The Properties of Ultra Rapid Hardenig Mortar for Repair Using Magnesia-Phosphate Cement", Doctorate Thesis, Dankook University, Korea, 2008.
  12. Walling, S. A., and Provis, J. L., "Magnesia-Based Cement: A Journey of 150 Years, and Cement for the Future?", Chemical Reviews, Vol. 116, No. 7, pp. 4170-4204. https://doi.org/10.1021/acs.chemrev.5b00463
  13. Korea concrete Institute, KCI Concrete Design Code, Kimoondang, 2012.
  14. Neville. A. M., Properties of Concrete, Longman, England, 1995.
  15. Ding, Z., Dong, B., Xing, F., Han, N., and Li, Z., "Cementing Mechanism of Potassium Phosphate Based Magnesium Phosphate Cement", Ceramics International, Vol. 38, 2012, pp. 6281-6288. https://doi.org/10.1016/j.ceramint.2012.04.083
  16. KS L ISO 679, KS F 5111, KS F 5015, KS F 2436, KS F 2103, Korean Industrial Standards, 2012.