DOI QR코드

DOI QR Code

Damage Evaluation of Bi-directionally Prestressed Concrete Panels under Blast-fire Combined Loading

폭발 후 화재하중 시나리오에 따른 2방향 프리스트레스트 콘크리트 패널부재의 손상도 평가

  • Choi, Ji-Hun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Choi, Seung-Jai (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Tae-Kyun (School of Civil and Environmental Engineering, Yonsei University) ;
  • Kim, Jang-Ho Jay (School of Civil and Environmental Engineering, Yonsei University)
  • 최지훈 (연세대학교 사회환경시스템공학부) ;
  • 최승재 (연세대학교 사회환경시스템공학부) ;
  • 김태균 (연세대학교 사회환경시스템공학부) ;
  • 김장호 (연세대학교 사회환경시스템공학부)
  • Received : 2016.11.16
  • Accepted : 2017.03.20
  • Published : 2017.06.30

Abstract

Frequent terror or military attack by explosion, impact, fire accidents have occurred recently. These attacks and incidents raised public concerns and anxiety of potential terrorist attacks on important infrastructures. However, structural behavioral researches on prestressed concrete (PSC) infrastructures such as Prestressed Concrete Containment Vessel (PCCV) and Liquefied Natural Gas (LNG) storage tanks under extreme loading are significantly lacking at this time. Also, researches on possible secondary fire scenarios after terror and bomb explosion has not been performed yet. Therefore, a study on PSC structural behavior from an blast-induced fire scenario was undertaken. To evaluate the blast-fire combined resistance capacity and its protective performance of bi-directional unbonded PSC member, blast-fire tests were carried out on $1,400mm{\times}1,000mm{\times}300mm$ PSC specimens. Blast loading tests were performed by the detonation of 25 kg ANFO explosive charge at 1.0 m standoff distance. Also, fire and blast-fire combined loading were tested using RABT fire loading curve. The test results are discussed in detail in the paper. The results can be used as basic research references for related research areas, which include protective design simulation under blast-fire combined loading.

각종 사고 및 테러로 인한 폭발, 충돌, 화재 사고가 발생함에 따라 사회적인 안전 불감증이 더욱 고조되고 있으나, 실제 극한하중에 대한 구조물의 방호 설계가 반영되지 못하고 있는 실정이다. 특히, 원전격납구조물, 가스탱크 등과 같은 주요 시설물에 적용되고 있는 2방향 프리스트레스트 콘크리트(PSC) 구조물에 대한 폭발, 그리고 폭발로 인한 2차적으로 발생 가능한 화재에 대한 연구가 미흡함에 따라 복합손상 시나리오에 대한 구조물의 검토가 필요하다. 따라서, 본 연구에서는 폭발 후 화재하중 복합손상을 분석하기 위하여 $1,400mm{\times}1,000mm{\times}300mm$의 2방향 비부착 프리스트레스트 콘크리트를 제작하여, 폭발하중은 ANFO 25 kg의 장약량을 1.0 m 이격거리로 실험을 구성하고, 화재하중은 5분 이내에 $1,200^{\circ}C$의 화재하중을 가할 수 있는 RABT 화재시나리오를 적용하여 극한저항성능을 검토하였다. 본 연구는 향후 국내외 프리스트레스트 콘크리트에 대한 방호설계 및 폭발해석 등 관련 연구분야의 중요한 자료가 될 것이라 판단된다.

Keywords

References

  1. Shin, S. W., Kwon, Y. J., Kim, W. J., Song, H., Shin, Y. S., Yoo, S. H., Lee, S. H., Lee, K. D., Choi, K. H., and Hong, S. G., Fire Safety Design Guidelines of High Strength Concrete Structures, Architectural Institute of Korea, Ki Moon dang, Korea, 2008, pp. 1-50.
  2. Ha, J. H., Yi, N. H., Kim, S. B., Choi, J. K., and Kim, J. H. J., "Experimental Study on Blast Resistance Improvement of RC Panels by FRP Retrofitting", Journal of the Korea Concrete Institute, Vol. 22, No. 1, 2010, pp. 93-102. https://doi.org/10.4334/JKCI.2010.22.1.093
  3. Won, J. P., Choi, S. W., Park, C. G., and Park, H. K., "Temperature Distribution of Wet-mixed High Strength Sprayed Polymer Mortar for Fire Resistance of Tunnel", Journal of Korean Society of Civil Engineers, Vol. 26, No. 4C, 2006, pp. 283-290.
  4. Chang, S. H., Choi, S. W., Kwon, J. W., and Bae, G. J., "Evaluation of Fire-Induced Damage to Structural Members in Tunnels", Journal of Korean Society of Civil Engineers, Vol. 26, No. 3C, 2006, pp. 219-228.
  5. Kang, J. Y., Yoon, H. A., Kim, W. S., Kodur, V., Shin, Y. S., Kim, H. S., "Effect of Wall Thickness on Thermal Behaviors of RC Walls Under Fire Conditions", International Journal of Concrete Structures and Materials, Vol. 10, No. 3, 2016, pp. S19-S31. https://doi.org/10.1007/s40069-016-0164-5
  6. Hyde, D. W., Fundamental of Protective Design for Conventional Weapons, CONWEP (Conventional Weapons Effects), TM5-8511-1, United States Army Waterway Experiment Station, Vicksburg, Miss., 1992.
  7. Baker, W. E., Explosions in Air, Wilfred Baker Engineering, San Antonio., 1973.
  8. TM5-855-1 / AFPAM32-1147 / NAVFACP-1080 / DAHSCWEMAN-97 Design and Analysis of Hardened Structures to Conventional Weapons Effects, Joint Departments of the Army, Air Force, Navy and the Defense Special Weapons Agency, Washington, DC., 1997.
  9. Kakogiannis, D., Pascualena, F., Reymen, B., Pyl, L., Ndambi, J. M., Segers, E., Lecompte, D., Vantomme, J., and Krauthammer, T., "Blast Performance of Reinforced Concrete Hollow Core Slabs in Combination with Fire: Numerical and Experimental Assessment", Fire Safety Journal, Vol. 57, 2013, pp. 69-82. https://doi.org/10.1016/j.firesaf.2012.10.027
  10. Huo, J., Zheng, Q., and Chen, B., "Tests on Impact Behaviour of Micro-Concrete-Filled Steel Tubes at elevated Temperatures up to $400^{\circ}C$", Materials and Structures, Vol. 42, 2009, pp. 1325-1334, https://doi.org/10.1617/s11527-008-9452-0
  11. Schmeider, U., "Properties of Materal at High Temperatures-Concrete", 2nd edn, RILEM Report, Gesamthochule Kassel, Germany, 1986, pp. 39-41.
  12. Jeon, S. J., Jim, B. M., and Kim, Y. J., "Assessment of the Fire Resistance of a Nuclear Power Plant Exposed to Jet Fuel Fire", Civil Expo 2011, Korean Society of Civil Engineers, Il-San KINTEX, 2011, pp. 419-422.
  13. Choi, J. H., Choi, S. J., Cho, C. M., Kim, T. K., and Kim, J. H. J., "Experimental Evaluation of Bi-directionally Unbonded Prestressed Concrete Panels Blast resistance Behavior under Blast Loading Scenario", Journal of the Korea Concrete Institute, Vol. 28, No. 6, 2016, pp. 673-683. https://doi.org/10.4334/JKCI.2016.28.6.673
  14. International Tunnelling Association, "Guidelines for Structural Fire Resistance for Road Tunnels", Working Group, No. 6, ITA, 2004, pp. 1.1-2.9.