References
- C. Wen, Noncatalytic Heterogeneous Solid Fluid Reaction Models, Ind. Eng Chem., 60 (1986) 34-54.
- S. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
- F. Patisson, M. Francois, D. Ablitzer, A Nonisothermal, Non-equimolar Transient Kinetic Model for Gas-solid Reactions, Chem. Eng. Sci., 53 (1998) 697-708. https://doi.org/10.1016/S0009-2509(97)00333-3
- M. Valipour, Y. Saboohi, Modeling of Multiple Noncatalytic Gas-solid Reactions in a Moving Bed of Porous Pellets Based on Finite Volume Method, Heat and Mass Transf., 43 (2007) 881-894. https://doi.org/10.1007/s00231-006-0154-2
- T. Melchiori, P. Canu, Improving the Quantitative Description of Reacting Porous Solids: Critical Analysis of the Shrinking Core Model by Comparison to the Generalized Grain Model, Ind. Eng. Chem. Res., 53 (2014) 8980-8995. https://doi.org/10.1021/ie403030g
- D. Shin, S. Choi, The Combustion of Simulated Waste Particles in a Fixed Bed, Combust. Flame., 121 (2000) 167-180. https://doi.org/10.1016/S0010-2180(99)00124-8
- W. Yang, C. Ryu, S. Choi, E. Choi, D. Lee, W. Huh, Modeling of Combustion and Heat Transfer in an Iron Ore Sintering Bed with Considerations of Multiple Solid Phases, ISIJ International, 44 (2004) 492-499. https://doi.org/10.2355/isijinternational.44.492
- O. Levenspiel, Chemical Reaction Engineering, John Wiley & Cons, Inc., New York, 1999.
- K. Yang, S. Choi, J. Chung, J. Yagi, Numerical Modeling of Reaction and Flow Characteristics in a Blast Furnace with Consideration of Layered Burden, ISIJ International, 50 (2010) 972-980. https://doi.org/10.2355/isijinternational.50.972
- Y. Hara, M. Tsuchiya, S. Kondo, Reduction of Iron Oxide Pellets with Hydrogen at High Temperatures, Tetsu-to-Hagane, 55 (1969) 1297-1311. https://doi.org/10.2355/tetsutohagane1955.55.14_1297
- Y. Hara, M. Tsuchiya, S. Kondo, Intraparticle Temperature of Iron-Oxide Pellet during the Reduction, Tetsu-to-Hagane, 60 (1974) 1261-1270. https://doi.org/10.2355/tetsutohagane1955.60.9_1261
- M. Ishida, C. Wen, Comparison of Zone-reaction Model and Unreacted-core Shrinking Model in Solid-gas Reactions - I Isothermal Analysis, Chem. Eng. Sci., 26 (1971) 1043-1048. https://doi.org/10.1016/0009-2509(71)80018-0
- D. Do, On the Validity of the Shrinking Core Model in Noncatalytic Gas Solid Reaction, Chem. Eng. Sci., 34 (1982) 1477-1481.
- K. Kucukada, J. Thibault, D. Hodouin, G. Paquet, S. Caron, Modeling of a Pilot Scale Iron Ore Pellet Induration Furnace, Canadian Quarterly, 33 (1994) 1-12.
- J. Szekely, J. Evans, H. Sohn, Gas-solid Reactions, Academic Press, New York, 1976.
- S. Nouri, H. Ebrahim, E. Jamshidi, Simulation of Direct Reduction Reactor by the Grain Model, Chem. Eng. J., 166 (2011) 704-709. https://doi.org/10.1016/j.cej.2010.11.025
- H. Ahn, S. Choi, A Comparison of the Shrinking Core Model and the Grain Model for the Iron Ore Pellet Indurator Simulation, Comput. Chem. Eng., 97 (2017) 13-26. https://doi.org/10.1016/j.compchemeng.2016.11.005
- S. Sadrnezhaad, A Ferdowsi, H. Payab, Mathematical Model for a Straight Grate Iron Ore Pellet Induration Process of Industrial Scale, Computational Material Science, 44 (2008) 296-302. https://doi.org/10.1016/j.commatsci.2008.03.024
- H. Thunman, B. Lechner, F. Niklasson, F. Johnsson, Combustion of Wood Particles-A Particle Model for Eulerian Calculations, Combust. Flame., 129 (2002) 30-46. https://doi.org/10.1016/S0010-2180(01)00371-6
- J. Wurzenberger, S. Wallner, H. Raupenstrauch, Thermal Conversion of Biomass: Comprehensive Reactor and Particle Modeling, AIChE Journal., 48 (2002) 2398-2411. https://doi.org/10.1002/aic.690481029
- R. Johansson, H. Thunmann, B. Leckner, Influence of Intraparticle Gradients in Modeling of Fixed Bed Combustion, Combust. Flame., 149 (2007) 49-62. https://doi.org/10.1016/j.combustflame.2006.12.009