DOI QR코드

DOI QR Code

Industrial Solids Processing Applications - Particle Reaction Models and Bed Reactor Models

산업용 고체 처리 공정 - 입자 반응 및 고정층 반응기 모델링

  • Ahn, Hyungjun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Choi, Sangmin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • 안형준 (한국과학기술원 기계공학과) ;
  • 최상민 (한국과학기술원 기계공학과)
  • Received : 2016.12.13
  • Accepted : 2017.05.09
  • Published : 2017.06.30

Abstract

This paper reviews the previous industrial solid bed process simulations to provide a better understanding of the modeling approaches to the particle reactions in the bed. Previous modeling studies on waste incinerator, iron ore sintering bed, blast furnace, iron ore pellet indurator, and biomass combustor can be seen on the common ground of unsteady 1-D modeling scheme. Approaches to the particle reaction modeling have been discussed in terms of the status of solid particles in the bed, types of reaction progression in a particle, and the consideration of the intra-particle temperature gradient.

Keywords

References

  1. C. Wen, Noncatalytic Heterogeneous Solid Fluid Reaction Models, Ind. Eng Chem., 60 (1986) 34-54.
  2. S. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
  3. F. Patisson, M. Francois, D. Ablitzer, A Nonisothermal, Non-equimolar Transient Kinetic Model for Gas-solid Reactions, Chem. Eng. Sci., 53 (1998) 697-708. https://doi.org/10.1016/S0009-2509(97)00333-3
  4. M. Valipour, Y. Saboohi, Modeling of Multiple Noncatalytic Gas-solid Reactions in a Moving Bed of Porous Pellets Based on Finite Volume Method, Heat and Mass Transf., 43 (2007) 881-894. https://doi.org/10.1007/s00231-006-0154-2
  5. T. Melchiori, P. Canu, Improving the Quantitative Description of Reacting Porous Solids: Critical Analysis of the Shrinking Core Model by Comparison to the Generalized Grain Model, Ind. Eng. Chem. Res., 53 (2014) 8980-8995. https://doi.org/10.1021/ie403030g
  6. D. Shin, S. Choi, The Combustion of Simulated Waste Particles in a Fixed Bed, Combust. Flame., 121 (2000) 167-180. https://doi.org/10.1016/S0010-2180(99)00124-8
  7. W. Yang, C. Ryu, S. Choi, E. Choi, D. Lee, W. Huh, Modeling of Combustion and Heat Transfer in an Iron Ore Sintering Bed with Considerations of Multiple Solid Phases, ISIJ International, 44 (2004) 492-499. https://doi.org/10.2355/isijinternational.44.492
  8. O. Levenspiel, Chemical Reaction Engineering, John Wiley & Cons, Inc., New York, 1999.
  9. K. Yang, S. Choi, J. Chung, J. Yagi, Numerical Modeling of Reaction and Flow Characteristics in a Blast Furnace with Consideration of Layered Burden, ISIJ International, 50 (2010) 972-980. https://doi.org/10.2355/isijinternational.50.972
  10. Y. Hara, M. Tsuchiya, S. Kondo, Reduction of Iron Oxide Pellets with Hydrogen at High Temperatures, Tetsu-to-Hagane, 55 (1969) 1297-1311. https://doi.org/10.2355/tetsutohagane1955.55.14_1297
  11. Y. Hara, M. Tsuchiya, S. Kondo, Intraparticle Temperature of Iron-Oxide Pellet during the Reduction, Tetsu-to-Hagane, 60 (1974) 1261-1270. https://doi.org/10.2355/tetsutohagane1955.60.9_1261
  12. M. Ishida, C. Wen, Comparison of Zone-reaction Model and Unreacted-core Shrinking Model in Solid-gas Reactions - I Isothermal Analysis, Chem. Eng. Sci., 26 (1971) 1043-1048. https://doi.org/10.1016/0009-2509(71)80018-0
  13. D. Do, On the Validity of the Shrinking Core Model in Noncatalytic Gas Solid Reaction, Chem. Eng. Sci., 34 (1982) 1477-1481.
  14. K. Kucukada, J. Thibault, D. Hodouin, G. Paquet, S. Caron, Modeling of a Pilot Scale Iron Ore Pellet Induration Furnace, Canadian Quarterly, 33 (1994) 1-12.
  15. J. Szekely, J. Evans, H. Sohn, Gas-solid Reactions, Academic Press, New York, 1976.
  16. S. Nouri, H. Ebrahim, E. Jamshidi, Simulation of Direct Reduction Reactor by the Grain Model, Chem. Eng. J., 166 (2011) 704-709. https://doi.org/10.1016/j.cej.2010.11.025
  17. H. Ahn, S. Choi, A Comparison of the Shrinking Core Model and the Grain Model for the Iron Ore Pellet Indurator Simulation, Comput. Chem. Eng., 97 (2017) 13-26. https://doi.org/10.1016/j.compchemeng.2016.11.005
  18. S. Sadrnezhaad, A Ferdowsi, H. Payab, Mathematical Model for a Straight Grate Iron Ore Pellet Induration Process of Industrial Scale, Computational Material Science, 44 (2008) 296-302. https://doi.org/10.1016/j.commatsci.2008.03.024
  19. H. Thunman, B. Lechner, F. Niklasson, F. Johnsson, Combustion of Wood Particles-A Particle Model for Eulerian Calculations, Combust. Flame., 129 (2002) 30-46. https://doi.org/10.1016/S0010-2180(01)00371-6
  20. J. Wurzenberger, S. Wallner, H. Raupenstrauch, Thermal Conversion of Biomass: Comprehensive Reactor and Particle Modeling, AIChE Journal., 48 (2002) 2398-2411. https://doi.org/10.1002/aic.690481029
  21. R. Johansson, H. Thunmann, B. Leckner, Influence of Intraparticle Gradients in Modeling of Fixed Bed Combustion, Combust. Flame., 149 (2007) 49-62. https://doi.org/10.1016/j.combustflame.2006.12.009