DOI QR코드

DOI QR Code

항균 가식성 필름/코팅 개발 현황

Development of antimicrobial edible films and coatings: a review

  • 김수연 (서울여자대학교 식품공학과) ;
  • 민세철 (서울여자대학교 식품공학과)
  • Kim, Su Yeon (Department of Food Science and Technology, Seoul Women's University) ;
  • Min, Sea C. (Department of Food Science and Technology, Seoul Women's University)
  • 투고 : 2017.04.28
  • 심사 : 2017.05.15
  • 발행 : 2017.06.30

초록

항균 가식성 필름/코팅은 항균 물질을 식품에 직접 적용하는 경우보다 적은 양의 항균 물질로 지속적인 항균 효과를 기대할수 있는 효율적인 식품 살균 방법의 하나로서 제안 될 수 있다. 항균 가식성 코팅 필름은 섭취 기능하고 필름/코팅의 구조를 형성할 수 있는 탄수화물 고분자, 단백질, 왁스 등의 재료를 주재료로 사용하여 만들어진다. 최근 두가지 이상의 재료를 혼합해 주재료로 사용한 항균 가식성 필름/코팅과 식품 가공 부산물로 제작한 필름/코팅의 항균 기능 및 물리적 특성에 대한 연구가 활발히 진행되고 있다. 또한, 라이신, 유산균 분리 배양액, 전통주, 고초균, 메틸시클로프로펜, 엡실론-카프로락톤 나노 섬유, 질산 은과 나노 점토, 산화 아연 등 새로운 항균 물질을 기존 필름 주재료에 사용하거나 방향유, 유기산, 효소 등 기존 항균 물질을 키토산과 알긴산 혼합물, 한천과 바나나 가루 혼합물 등 새로운 조성의 필름 주재료에 첨가하여 항균 효과와 물리적 특성을 관찰한 연구들이 보고되었다. 필름 주재료 또는 항균 물질로 인해 필름/코팅의 항균 효과 및 인장 특성, 수분 방벽 능력이 개선된 경우와 그렇지 못한 경우를 보고한 연구들을 통해 원하는 항균 효과와 물리적 특성을 갖는 필름을 제조하기 위해서는 항균 가식성 필름/코팅의 주재료와 항균 물질의 상호 반응을 고려해야 함을 알 수 있었다. 가식성 필름/코팅 항균 효과의 통계적 예측을 통해 항균 가식성 필름/코팅을 제작하는데 필요한 요건들을 결정할 수 있으며, 항균 필름의 적용으로 식중독 사고 발생율이 얼마나 감소되었는지 예측 할 수 있다. 항균 가식성 필름/코팅들은 식중독균과 오염균을 저해 할 수 있고, 항균 물질의 방출을 조절할 수 있으며 식품 수분 유입을 방지할 수 있다. 또한, 합성 포장재를 대체 할 수 있는 친환경 포장재이므로 더욱 다양한 식품의 미생물안전성 향상과 보존을 위해 사용될 수 있을 것으로 전망된다.

Food packaging strategies have steadily improved with increasing demand for improved food safety, convenience, and shelf life. The development of edible film has been hailed as a technology substituting packaging using synthetic plastics. There has been a surge for research to develop antimicrobial edible films and coatings that can increase microbiological safety while preserving foods. This review addresses recent results that are useful in advancing and extending research into antimicrobial edible films. In this review, we suggest the trend of the development of antimicrobial edible film/coatings by outlining edible film materials, antimicrobial substances, antimicrobial and physical properties of the films, commercial antimicrobial edible films, and methods to statistically predict the efficacy of antimicrobial edible film/coatings, reported in recent studies.

키워드

과제정보

연구 과제 주관 기관 : 농림수산식품기술기획평가원

참고문헌

  1. Cagri A, Ustunol Z, Ryser ET. Antimicrobial edible films and coatings. J. Food Protect. 67: 833-848 (2004) https://doi.org/10.4315/0362-028X-67.4.833
  2. Falguera V, Quintero JP, Jimenez A, Munoz JA, Ibarz A. Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci. Technol. 22: 292-303 (2011) https://doi.org/10.1016/j.tifs.2011.02.004
  3. Lee H, Min SC. Antimicrobial edible defatted soybean mealbased films incorporating the lactoperoxidase system. LWT-Food Sci. Technol. 54 : 42-50 (2013) https://doi.org/10.1016/j.lwt.2013.05.012
  4. Min SC, Janjarasskul T, Krochta JM. Tensile and moisture barrier properties of whey protein-beeswax layered composite films. J. Sci. Food Arg. 89 : 251-257 (2009) https://doi.org/10.1002/jsfa.3434
  5. Sanchez-Ortega I, Garcia-Almendarez BE, Santos-Lopez EM, Amaro-Reyes A, Barboza-Corona JE, Regalado C. Antimicrobial edible films and coatings for meat and meat products preservation. The Scientific World J. 2014: 1-18 (2014)
  6. Franssen LR, Rumsey TR, Krochta JM. Whey protein film composition effects on potassium sorbate and natamycin diffusion. J. Food Sci. 69 : C347-C350 (2004)
  7. Min S, Krochta JM. Inhibition of Penicillium commune by edible whey protein films incorporating lactoferrin, lactoferrin hydrolysate, and lactoperoxidase systems. J. Food Sci. 70: M87-M94 (2005) https://doi.org/10.1111/j.1365-2621.2005.tb07108.x
  8. Valencia-Chamorro SA, Palou L, del Rio MA, Perez-Gago MB. Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables: a review. Crc Critical. Rev. Food Sci. Nutr. 51 : 872-900 (2011) https://doi.org/10.1080/10408398.2010.485705
  9. Min SC. Antimicrobial and sustainable biopolymer films for food packaging. Food and Machinery 6: 14-17 (2009)
  10. Appendini P. Hotchkiss JH. Review of antimicrobial food packaging. Innov. Food Sci. Emerg. Technol. 3: 113-126 (2002) https://doi.org/10.1016/S1466-8564(02)00012-7
  11. Vargas-Torres A, Becerra-Loza AS, Sayago-Ayerdi SG, Palma-Rodriguez HM, de Lourdes Garcia-Magana M, Montalvo-Gonzalez E. Combined effect of the application of 1-MCP and different edible coatings on the fruit quality of jackfruit bulbs(Artocarpus heterophyllus Lam) during cold storage. Sci. Hortic. Amsterdam, 214 : 221-227 (2017) https://doi.org/10.1016/j.scienta.2016.11.045
  12. Salgado PR, Ortiz CM, Musso YS, Di Giorgio L, Mauri AN. Edible films and coatings containing bioactives. Curr. Opin. Food Sci. 5 : 86-92 (2015) https://doi.org/10.1016/j.cofs.2015.09.004
  13. Kapetanakou AE, Karyotis D, Skandamis PN. Control of Listeria monocytogenes by applying ethanol-based antimicrobial edible films on ham slices and microwave-reheated frankfurters. Food Microbiol. 54 : 80-90 (2016) https://doi.org/10.1016/j.fm.2015.10.013
  14. Oregel-Zamudio E, Angoa-Perez MV, Oyoque-Salcedo G, Aguilar-Gonzalez CN, Mena-Violante HG. Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Sci. Hortic. Amsterdam, 214: 273-279 (2017) https://doi.org/10.1016/j.scienta.2016.11.038
  15. Ma Q, Zhang Y, Zhong Q. Physical and antimicrobial properties of chitosan films incorporated with lauric alginate, cinnamon oil, and ethylenediaminetetraacetate. LWT-Food Sci. Technol. 65: 173-179 (2016) https://doi.org/10.1016/j.lwt.2015.08.012
  16. Poverenov E, Danino S, Horev B, Granit R, Vinokur Y, Rodov V. Layer-by-layer electrostatic deposition of edible coating on fresh cut melon model: anticipated and unexpected effects of alginate-chitosan combination. Food Bioprocess. Technol. 7: 1424-1432 (2014) https://doi.org/10.1007/s11947-013-1134-4
  17. Orsuwan A, Shankar S, Wang LF, Sothomvit R, Rhim JW. Preparation of antimicrobial agar/banana powder blend films reinforced with silver nanoparticles. Food Hydrocolloid. 60: 476-485 (2016) https://doi.org/10.1016/j.foodhyd.2016.04.017
  18. Neetoo H, Ye M, Chen H. Bioactive alginate coatings to control Listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol. 136 : 326-331 (2010) https://doi.org/10.1016/j.ijfoodmicro.2009.10.003
  19. Rhim JW, Kim JH. Preparation of bio-degradable films using various marine algae powder. Korean J. Food Sci. Technol. 36: 69-74 (2004)
  20. Sablani SS, Dasse F, Bastauachea L, Dhawan S, Hendrix KM, Min SC. Apple peel-based edible film development using a high-pressure homogenization. J. Food Sci. 74: E372-E381 (2009). https://doi.org/10.1111/j.1750-3841.2009.01273.x
  21. Kang HJ, Min SC. Potato peel-based biopolymer film development using high-pressure homogenization, irradiation, and ultrasound. LWT-Food Sci. Technol. 43 : 903-909 (2010) https://doi.org/10.1016/j.lwt.2010.01.025
  22. Kim IH, Yang HJ, Noh BS, Chung SJ, Min SC. Development of a defatted mustard meal-based composite film and its application to smoked salmon to retard lipid oxidation. Food Chem. 133: 1501-1509 (2012) https://doi.org/10.1016/j.foodchem.2012.02.040
  23. Laohakunjit N, Noomhorm A. Effect of plasticizers on mechanical and barrier properties of rice starch film. Starch-Starke, 56: 348-356 (2004) https://doi.org/10.1002/star.200300249
  24. Bassole IHN, Juliani HR. Essential oils in combination and their antimicrobial properties. Molecules. 17: 3989-4006 (2012) https://doi.org/10.3390/molecules17043989
  25. Gomez-Estaca J, De Lacey AL, Lopez-Caballero ME, Gomez-Guillen MC, Montero P. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 27 : 889-896 (2010) https://doi.org/10.1016/j.fm.2010.05.012
  26. Mastromatteo M, Mastromatteo M, Conte A, Del Nobile MA. Antimicrobial enzymes and natural extracts in plastics. Antimicrob. Polym. 159-194 (2011)
  27. Lee HB, Noh BS, Min SC. Applications of active food packaging. Food Sci. Ind. 43 : 14-21 (2010)
  28. del Carmen Beristain-Bauza S, Mani-Lope E, Palou E, Lopez-Malo A. Antimicrobial activity of whey protein films supplemented with Lactobacillus sakei cell-free supernatant on fresh beef. Food Microbiol. 62 : 207-211 (2017) https://doi.org/10.1016/j.fm.2016.10.024
  29. Rodriguez-Garcia I, Cruz-Valenzuela MR, Silva-Espinoza BA, Gonzalez-Aguilar GA, Moctezuma E, Gutierrez-Pacheco MM, Ayala-Zavala JF. Oregano (Lippia graveolens) essential oil added within pectin edible coatings prevents fungal decay and increases the antioxidant capacity of treated tomatoes. J. Sci. Food Agr. 96 : 3772-3778 (2016) https://doi.org/10.1002/jsfa.7568
  30. Choi WS, Singh S, Lee YS. Characterization of edible film containing essential oils in hydroxypropyl methylcellulose and its effect on quality attributes of 'Formosa' plum (Primus salicinaL). LWT-Food Sci. Technol. 70 : 213-222 (2016) https://doi.org/10.1016/j.lwt.2016.02.036
  31. Lee HJ, Min SC, Song KB, Effects of edible coating on the quality change in 'hongro' apples during storage. J. Appl. Biol. Chem. 58: 61-64 (2015) https://doi.org/10.3839/jabc.2015.011
  32. Oh YA, Oh YJ, Song AY, Won JS, Son KB, Min SC. Comparison of effectiveness of edible coatings using emulsions containing lemongrass oil of different size droplets on grape berry safety and preservation. LWT-Food Sci. Technol. 75: 742-750 (2017) https://doi.org/10.1016/j.lwt.2016.10.033
  33. Duran M, Aday MS, Zorba N ND, Temizkan R, Biiyukcan MB, Caner C. Potential of antimicrobial active packaging 'containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating' to extend shelf life of fresh strawberry. Food Bioprod. Process. 98 : 354-363 (2016) https://doi.org/10.1016/j.fbp.2016.01.007
  34. Valencia-Chamorro SA, Palou L, Del Rio M A, Perez-Gago M B. Performance of hydroxyl propyl methyl cellulose (hydroxy propyl methyl cellulose)-lipid edible coatings with antifimgal food additives during cold storage of 'Clemenules' mandarins. LWT-Food Sci. Technol. 44 : 2342-2348 (2011) https://doi.org/10.1016/j.lwt.2011.02.014
  35. Erbay EA, Dagtekin BBG, Ture M, Yesilsu AF, Torres-Giner S. Quality improvement of rainbow trout fillets by whey protein isolate coatings containing electrospun poly (${\varepsilon}$-caprolactone) nanofibers with Urtica dioica L. extract during storage. LWT-Food Sci. Technol. 78 : 340-351 (2017) https://doi.org/10.1016/j.lwt.2017.01.002
  36. Duan J, Cherian G, Zhao Y. Quality enhancement in fresh andfrozen lingcod (Ophiodon elongates) fillets by employment of fish oil incorporated chitosan coatings. Food Chem. 119: 524-532 (2010) https://doi.org/10.1016/j.foodchem.2009.06.055
  37. Tammineni N, Unlu G, Min SC. Development of antimicrobial potato peel waste-based edible films with oregano essential oil to inhibit Listeria monocytogenes on cold-smoked salmon. Int. J. Food Sci. Technol. 48 : 211-214 (2013) https://doi.org/10.1111/j.1365-2621.2012.03156.x
  38. Song Y, Liu L, Shen H, You J, Luo Y. Effect of sodium alginate-based edible coating containing different anti-oxidants on quality and shelf life of refrigerated bream (Megalobrama ambly-cephala). Food Control 22: 608-615 (2011) https://doi.org/10.1016/j.foodcont.2010.10.012
  39. Espitia PJP, Du WX, de Jesus Avena-Bustillos R, Soares NDFF, McHugh TH. Edible films from pectin: Physical -mechanical and antimicrobial properties-A review. Food Hydrocolloid. 35: 287- 296 (2014) https://doi.org/10.1016/j.foodhyd.2013.06.005
  40. Liu Y, Cai Y, Jiang X, Wu J, Le X. Molecular interactions, characterization and antimicrobial activity of curcumin-chitosan blend films. Food Hydrocolloid. 52: 564-572 (2016) https://doi.org/10.1016/j.foodhyd.2015.08.005
  41. Alkan D, Aydemir LY, Arcan I, Yavuzdurmaz H, Atabay HI, Ceylan C, Yemenicioglu A. Development of flexible antimicrobial packaging materials against Campylobacter jejuni by incorporation of gallic acid into zein-based films. J. Agr. Food. Chem. 59 : 11003-11010 (2011) https://doi.org/10.1021/jf202584b
  42. Rawdkuen S, Suthiluk P, Kamhangwong D, Benjakul S. Mechanical, physico-chemical, and antimicrobial properties of gelatinbased film incorporated with catechin-lysozyme. Chem. Central J. 6 : 131 (2012)
  43. Lee H, Kim JE, Min SC. Quantitative risk assessments of the effect of an edible defatted soybean meal-based antimicrobial film on the survival of Salmonella on ham. J. Food Eng. 158: 30-38 (2015) https://doi.org/10.1016/j.jfoodeng.2015.03.002
  44. Yao Y, Ding D, Shao H, Peng Q, Huang Y. Antibacterial activity and physical properties of fish gelatin-chitosan edible films supplemented with D-limonene. Int. J. Polym. Sci. DOI: 10 1155/2017/1837171 (2017)
  45. Ma Q, Zhang Y, Critzer F, Davidson PM, Zivanovic S, Zhong Q. Physical, mechanical, and antimicrobial properties of chitosan films with microemulsions of cinnamon bark oil and soybean oil. Food Hydrocolloid. 52: 533-542 (2016) https://doi.org/10.1016/j.foodhyd.2015.07.036
  46. Basch CY, Jagus RJ, Flores SK. Physical and antimicrobial properties of tapioca starch-HPMC edible films incorporated with nisin and/or potassium sorbate. Food Bioprocess. Technol. 6: 2419-2428 (2013) https://doi.org/10.1007/s11947-012-0860-3
  47. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Hosseini SM, Khaksar R. Characterization of ${\kappa}$-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohyd. Polym. 101: 582-591 (2014) https://doi.org/10.1016/j.carbpol.2013.09.070
  48. Sun X, Wang Z, Kadouh H, Zhou K. The antimicrobial, mechanical, physical and structural properties of chitosan-gallic acid films. LWT-Food Sci. Technol. 57 : 83-89 (2014) https://doi.org/10.1016/j.lwt.2013.11.037
  49. Wang W, Liu Y, Jia H, Liu Y, Zlmng H, He Z, Ni Y. Effects of cellulose nanofibers filling and palmitic acid emulsions coating on the physical properties of fish gelatin films. Food Biophysics 12 : 23-32 (2017) https://doi.org/10.1007/s11483-016-9459-y
  50. Han JH, Antimicrobial food packaging, pp. 50-70. In: Novel Food Packaging Technologies. Ahvenainen, R. (Ed.), CRC Press, Boca Raton, FL, USA (2003)
  51. Lee HB, Oh YA, Min SC. Prediction of the coating requirements for smoked salmon Protect, against Listeria monocytogenes using a defatted mustard meal-based antimicrobial edible film containing thiocyanates. LWT-Food Sci. Technol. 61: 231-237 (2015) https://doi.org/10.1016/j.lwt.2014.11.005
  52. Femandez-Pan I, Carrion-Granda X, Mate JI. Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control 36: 69-75 (2014) https://doi.org/10.1016/j.foodcont.2013.07.032
  53. Guo M, Jin TZ, Wang L, Scullen OJ, Sommers CH. Antimicrobial films and coatings for inactivation of Listeria innocua on ready-to-eat deli turkey meat. Food Control 40: 64-70 (2014) https://doi.org/10.1016/j.foodcont.2013.11.018
  54. Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, Khaksar R. Physical, mechanical and barrier properties of com starch films incorporated with plant essential oils. Carbohyd. Polym. 98: 1117-1126 (2013) https://doi.org/10.1016/j.carbpol.2013.07.026
  55. Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, Khaksar R. Characterization of antioxidant-antimicrobial ${\kappa}$-carrageenan films containing Satureja hortensis essential oil. Int. J. Biol. Macromol. 52: 116-124 (2013) https://doi.org/10.1016/j.ijbiomac.2012.08.026
  56. Bayarri M, Oulahal N, Degraeve P, Gharsallaoui A. Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. J. Food Eng. 131: 18-25 (2014) https://doi.org/10.1016/j.jfoodeng.2014.01.013
  57. Sanchez-Gonzalez L, Saavedra JIQ, Chiralt A. Physical properties and antilisterial activity of bioactive edible films containing Lactobacillus plantarum. Food Hydrocolloid. 33: 92-98 (2013) https://doi.org/10.1016/j.foodhyd.2013.02.011
  58. Beristain-Bauza SC, Mani-Lopez E, Palou E, Lopez-Malo A. Antimicrobial activity and physical properties of protein films added with cell-free supernatant of Lactobacillus rhamnosus.Food Control 62 : 44-51 (2016) https://doi.org/10.1016/j.foodcont.2015.10.007
  59. Arfat YA, Benjakul S, Prodpran T, Sumpavapol P, Songtipya P. Physicomechanical characterization and antimicrobial properties of fish protein isolate/fish skin gelatin-zinc oxide (ZnO) nanocomposite films. Food Bioprocess. Technol. 9: 101-112 (2016)
  60. Kanmani P, Rhim JW. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid, 35: 644-652 (2014) https://doi.org/10.1016/j.foodhyd.2013.08.011
  61. Ramos OL, Silva SI, Soares JC, Fernandes JC, Pocas MF, Pintado ME, Malcata FX. Features and performance of edible films, obtained from whey protein isolate formulated with antimicrobial compounds. Food Res. Int. 45: 351-361 (2012) https://doi.org/10.1016/j.foodres.2011.09.016
  62. Zinoviadou KG, Koutsoumanis KP, Biliaderis CG. Physical and thermomechanical properties of whey protein isolate films containing antimicrobials, and their effect against spoilage flora of fresh beef. Food Hydrocolloid. 24: 49-59 (2010) https://doi.org/10.1016/j.foodhyd.2009.08.003