Acknowledgement
Supported by : EU
References
- Abrate, S. (1997), "Localized impact on sandwich structures with laminated facings", Appl. Mech. Rev., 50, 69-97. https://doi.org/10.1115/1.3101689
- Berggreen C., Branner K., Jensen J.F. and Schultz, J.P. (2007), "Application and analysis of sandwich elements in the primary structure of large wind turbine blades", J. Sandw. Struct. Mater., 9(6), 525-552. https://doi.org/10.1177/1099636207069071
- Besant, T., Davies, G.A.O. and Hitchings D. (2001), "Finite element modelling of low velocity impact of composite sandwich panels", Compos. part A - Appl. S., 32(9), 1189-1196. https://doi.org/10.1016/S1359-835X(01)00084-7
- Brondsted, P. and Nijssen, R.P.L. (2013), Advances in Wind Turbine Blade Design and Materials, Woodhead Publishing Limited, Cambridge, UK.
- Brooks, R., Brown, K.A., Warrior, N.A. and Kulandaivel, P.P. (2010), "Predictive modeling of the impact response of thermoplastic composite sandwich structures", J. Sandw. Struct. Mater., 12(4), 449-476. https://doi.org/10.1177/1099636209104537
- Burton, T., Jenkins, N., Sharpe, D. and Bossanyi, E. (2011), Wind Energy Handbook, 2nd Ed., John Wiley & Sons, Ltd, Chichester, UK.
- Chai, G.B. and Zhu S. (2011), "A review of low-velocity impact on sandwich structures", Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 225(4), 207-230.
- Det Norske Veritas (2006), Design And Manufacture of Wind Turbine Blades - Offshore and Onshore Wind Turbines, DNV-OS-J102.
- Det Norske Veritas and Riso National Laboratory (2002), Guidelines for Design of Wind Turbine, 2nd edition.
- Donadon, M.V., Iannucci, L., Falzon, B.G., Hodgkinson, J.M. and de Almeida, S.F.M. (2008), "A progressive failure model for composite laminates subjected to low velocity impact damage", Comput. Struct., 86(11-12), 1232-1252. https://doi.org/10.1016/j.compstruc.2007.11.004
- Faggiani, A. and Falzon, B.G. (2010), "Predicting low-velocity impact damage on a stiffened composite panel", Compos. part A-Appl. S., 41(6), 737-749. https://doi.org/10.1016/j.compositesa.2010.02.005
- Falzon, B.G. and Apruzzese, P. (2011), "Numerical analysis of intralaminar failure mechanisms in composite structures. Part I: FE implementation", Compos. Struct., 93(2), 1039-1046. https://doi.org/10.1016/j.compstruct.2010.06.028
- Feng, D. and Aymerich, F. (2013), "Damage prediction in composite sandwich panels subjected to low-velocity impact", Compos. part A-Appl. S., 52, 12-22. https://doi.org/10.1016/j.compositesa.2013.04.010
- Feng, D. and Aymerich, F. (2014), "Finite element modelling of damage induced by low-velocity impact on composite laminates", Compos. Struct., 108, 161-171. https://doi.org/10.1016/j.compstruct.2013.09.004
- Hayman, B. (2007), "Approaches to damage assessment and damage tolerance for FRP sandwich structures", J. Sandw. Struct. Mater., 9(6), 571-595. https://doi.org/10.1177/1099636207070853
- Hayman, B., Wedel-Heinen, J. and Brondsted P. (2008), "Materials challenges in present and future wind energy", MRS Bulletin, 33, 343-353. https://doi.org/10.1557/mrs2008.70
- Icardi, U. and Ferrero, L. (2009), "Impact analysis of sandwich composites based on a refined plate element with strain energy updating", Compos. Struct., 89(1), 35-51. https://doi.org/10.1016/j.compstruct.2008.06.018
- Ivanez, I., Santiuste, C. and Sanchez-Saez, S. (2010), "FEM analysis of dynamic flexural behaviour of composite sandwich beams with foam core", Compos. Struct., 92(9), 2285-2291. https://doi.org/10.1016/j.compstruct.2009.07.018
- Langdon, G.S., Karagiozova, D., von Klemperer C.J., Nurick, G.N., Ozinski, A. and Pickering, E.G. (2013), "The air-blast response of sandwich panels with composite face sheets and polymer foam cores: Experiments and predictions", Int. J. Impact Eng., 54, 64-82. https://doi.org/10.1016/j.ijimpeng.2012.10.015
- Mohmmed, R., Zhang, F., Sun, B. and Gu, B. (2013), "Finite element analyses of low-velocity impact damage of foam sandwiched composites with different ply angles face sheets", Mater. Design, 47, 189-199. https://doi.org/10.1016/j.matdes.2012.12.016
- Nguyen, M.Q., Jacombs, S.S., Thomson, R.S., Hachenberg, D. and Scott, M.L. (2005), "Simulation of impact on sandwich structures", Compos. Struct., 67(2), 217-227. https://doi.org/10.1016/j.compstruct.2004.09.018
- Ransom, J.B., Glaessgen, E.H., Raju, I.S. and Harris, C.E. (2013), "Recent advances in durability and damage tolerance methodology at NASA Langley Research Center", in Advances in Interdisciplinary Mathematical Research, Bourama Toni, Ed., Springer, New York.
- Schurmann, H. and Puck, A. (2002), "Failure analysis of FRP laminates by means of physically based phenomenological models", Compos. Sci. Technol., 62, 1633-1662. https://doi.org/10.1016/S0266-3538(01)00208-1
- Thomsen, O.T. (2009), "Sandwich materials for wind turbine blades - present and future", J Sandw. Struct. Mater., 11(1), 7-26. https://doi.org/10.1177/1099636208099710
- Wang, J., Waas A.M. and Wang H. (2013), "Experimental and numerical study on the low-velocity impact behavior of foam-core sandwich panels", Compos. Struct., 96, 298-311. https://doi.org/10.1016/j.compstruct.2012.09.002
- Yang, P., Shams, S.S., Slay, A., Brokate, B. and Elhajjar, R. (2015), "Evaluation of temperature effects on low velocity impact damage in composite sandwich panels with polymeric foam cores", Compos. Struct., 129, 213-223. https://doi.org/10.1016/j.compstruct.2015.03.065
- Zenkert, D., Shipsha, A., Bull, P. and Hayman, B. (2005), "Damage tolerance assessment of composite sandwich panels with localised damage", Compos. Sci. Technol., 65(15), 2597-2611. https://doi.org/10.1016/j.compscitech.2005.05.026
- Zhou, J., Hassan, M.Z., Guan, Z. and Cantwell, W.J. (2012), "The low velocity impact response of foam-based sandwich panels", Compos. Sci. Technol., 72(14), 1781-1790. https://doi.org/10.1016/j.compscitech.2012.07.006