DOI QR코드

DOI QR Code

Characteristics of Zonda wind in South American Andes

  • Loredo-Souza, Acir M. (Laboratorio de Aerodinamica das Construcoes, Universidade Federal do Rio Grande do Sul) ;
  • Wittwer, Adrian R. (Laboratorio de Aerodinamica, Facultad de Ingenieria, Universidad Nacional del Nordeste) ;
  • Castro, Hugo G. (Grupo de Investigacion en Mecanica de Fluidos, Instituto de Modelado e Innovacion Tecnologica - CONICET, Universidad Tecnologica Nacional, Facultad Regional Resistencia) ;
  • Vallis, Matthew B. (Laboratorio de Aerodinamica das Construcoes, Universidade Federal do Rio Grande do Sul)
  • Received : 2017.03.09
  • Accepted : 2017.04.27
  • Published : 2017.06.25

Abstract

This paper discusses some features and conditions that characterize the Zonda wind, focusing particularly on the implications for wind engineering applications. This kind of wind, typical of mountainous regions, is far from being adequately characterized for computational simulations and proper modeling in experimental facilities such as boundary layer wind tunnels. The objective of this article is to report the research works that are being developed on this kind of wind, describing the main obtained results, and also to establish some general guidelines for the proper analysis of the Zonda in the wind engineering context. A classification for the Zonda wind is indicated and different cases of structural and environmental effects are described. Available meteorological data is analyzed from the wind engineering point of view to obtain the Zonda wind gust factors, as well as basic wind speeds relevant for structural design. Some considerations and possible directions for the Zonda wind-tunnel and computational modeling are provided. Gust factor values larger than those used for open terrain were obtained, nevertheless, the basic wind speed values obtained are similar to values presented by the Argentinian Wind Code for three-second gust, principally at Mendoza airport.

Keywords

References

  1. Abdi, D. and Bitsuamlak, G. (2016), "Wind flow simulations in idealized and real built environments with models of various level of complexity". Wind Struct., 22(4), 503-524. https://doi.org/10.12989/was.2016.22.4.503
  2. Allende, D., Mulena, C., Cremades, P. and Puliafito, E. (2012), "Transporte de Aerosoles Generados por Erosion Durante Episodios de Fuertes Vientos: Un Estudio de Modelado", Avances en Energias Renovables y Medio Ambiente, 16, 0115-0121.
  3. Blessmann, J. (1982), "The boundary layer wind tunnel of UFRGS", J. Wind Eng. Ind. Aerod., 10, 231-248. https://doi.org/10.1016/0167-6105(82)90066-6
  4. Bodmann, B., Degrazia, G.A., Loredo-Souza, A.M., Vilhena, M.T., Rolim, S., Moraes, M.R., Demarco, G., Trindade, L.B., Wittwer, A.R. and Dorado, R. (2014), "Small scale simulations of wind-velocity and heat-fluxes of atmospheric geophysical flows with wind tunnel experiments: the STROMA collaboration". In: VI Simposio Brasileiro de Geofisica, 2014, Porto Alegre. Anais do VI Simposio Brasileiro de Geofisica.
  5. Cermak, J.E. (1995), "Progress in physical modeling for wind engineering", J. Wind Eng. Ind. Aerod., 54-55, 439-455. https://doi.org/10.1016/0167-6105(94)00064-K
  6. CIRSOC-102 (2005), Reglamento Argentino de Accion del Viento sobre las Construcciones. INTI, Argentina.
  7. Diario La Ventana (2014), http://www.diariolaventana.com/2014/07/02 (accessed 01.03.2017).
  8. Diario Los Andes (2011), http://archivo.losandes.com.ar/notas/2011/11/8/ (accessed 17.08.2016).
  9. Diario Los Andes (2016), http://losandes.com.ar/2016/08/16 (accessed 05.03.2017).
  10. El Civico (2013), http://www.elcivico.com/notas/2013/05/31/ (accessed 01.03.2017).
  11. Explicito (2016), http://www.explicitoonline.com/136736-2/2016/08/15 (accessed 24.02.2017).
  12. He, Y., Chan, P. and Li, Q. (2014), "Field measurements of wind characteristics over hilly terrain within surface layer", Wind Struct., 19(5), 541-563. https://doi.org/10.12989/was.2014.19.5.541
  13. Hertig, J.A. (1984), "A stratified boundary layer wind tunnel designed for wind engineering and diffusion studies", J. Wind Eng. Ind. Aerod., 16, 265-278. https://doi.org/10.1016/0167-6105(84)90010-2
  14. Infobae (2015), http://www.infobae.com/2015/08/06/ (accessed 11.08.2016).
  15. Juretic, F. and Kozmar, H. (2014), "Computational modeling of the atmospheric boundary layer using various two-equation turbulence models", Wind Struct., 19(6), 687-708. https://doi.org/10.12989/was.2014.19.6.687
  16. Lassig, J.L., Cogliati, M.G., Bastanski, M.A. and Palese, C. (1999), "Wind characteristics in Neuquen, North Patagonia, Argentina", J. Wind Eng. Ind. Aerod., 79, 183-199. https://doi.org/10.1016/S0167-6105(98)00110-X
  17. Lepri, P., Kozmar, H., Vecenaj, Z. and Grisogono, B. (2014), "A summertime near-ground velocity profile of the Bora wind", Wind Struct., 19(5), 505-522. https://doi.org/10.12989/was.2014.19.5.505
  18. Li, Q. and Hu, S. (2015), "Monitoring of wind effects on an instrumented low-rise building during severe tropical storm", Wind Struct., 20(3), 469-488. https://doi.org/10.12989/was.2015.20.3.469
  19. Loredo-Souza, A.M., Mattuella, J.M.L. and Oliveira, M.G.K. (2012), "Investigation of the atmospheric boundary layer characteristics over different hills", Proceedings of the 12th German Wind Energy Conference-DEWEK, November 7-8, Bremen, Germany.
  20. Loredo-Souza, A.M., Wittwer, A.R., Rocha, M.M., De Bortoli, M.E., Oliveira, M.G. and Marighetti, J.O. (2017), "Brazil and Argentina joint program in wind engineering", Wind Engineers, JAWE, 41, 331-335.
  21. Mattuella, J.M.L., Loredo-Souza, A.M., Oliveira, M.G.K. and Petry, A.P. (2016), "Wind tunnel experimental analysis of a complex terrain micrositing", Renew. Sust. Energ. Rev., 54, 110-119. https://doi.org/10.1016/j.rser.2015.09.088
  22. Mesinger, F., Jovic, D., Chou, S.C., Gomes, J. and Bustamante, J. (2006), "Wind forecast around the Andes using the sloping discretization of the ETA coordinate", Proceedings of the 8 ICSHMO, Foz do Iguacu, Brazil, INPE, 1837-1848, April 24-28.
  23. National Centers for Environmental Information, .
  24. Norte and Simonelli (2016), "Validation of a statistical forecast model for Zonda wind in West Argentina based on the vertical atmospheric structure", Atmos. Clim. Sci., 6, 35-50.
  25. Norte, F.A. (2015), "Understanding and forecasting Zonda wind (Andean Foehn) in Argentina: A review", Atmos. Clim. Sci., 5, 163-193.
  26. Norte, F., Santos, J., Simonelli, S. and Araneo, D. (2010), "El episodio de viento zonda del 14 de agosto de 2009 analizado con el modelo WRF", XVI Congresso Brasileiro de Meteorologia (XVI CBMET).
  27. Norte, F.A. (1988), "Caracteristicas del Viento Zonda en la Region de Cuyo", Ph.D. Thesis, University of Buenos Aires. Available from Programa Regional de Meteorologia, Instituto Argentino de Nivologia, Glaciologia y Ciencias Ambientales, Centro Cientifico Tecnologico, CONICET, Mendoza, Argentina.
  28. Orlanski, I. (1975), "Rational subdivision of scales for atmospheric processes", Bull. Am. Meteorol. Soc., 56(5), 527-530. https://doi.org/10.1175/1520-0477-56.5.527
  29. Petry, A.P., Loredo-Souza, A.M., Mattuella, J.M.L., Oliveira, M.G.K. and De Freitas Filho, D.G.R. (2012), "Wind tunnel and CFD analysis of wind flow over a complex terrain", Proceedings of the12th German Wind Energy Conference-DEWEK, November 7-8, Bremen, Germany.
  30. Puliafito, E., Allende, D., Mulena, C., Cremades, P. and Lakkis, S. (2015), "Evaluation of the WRF model configuration for Zonda wind events in a complex terrain", Atmos. Res., 166, 24-32. https://doi.org/10.1016/j.atmosres.2015.06.011
  31. REDEMET, Rede de Meteorologia do Comando da Aeronautica .
  32. Richner, H., Hachler, P. (2013), "Understanding and forecasting Alpine Foehn", Mountain Weather Res. Forecast., (Eds. by F.K. Chow et al.), Springer Atmospheric Sciences.
  33. Rottman, J.W. and Smith, R.B. (1989), "A laboratory model of severe downslope winds", Tellus A: Dynam. Meteorol. Oceanography, 41(5), 401-415. https://doi.org/10.3402/tellusa.v41i5.11849
  34. Schatzmann, M., Donat, J., Hendel, S. and Krishan, G. (1995), "Design of a low-cost stratified boundary-layer wind tunnel", J. Wind Eng. Ind. Aerod., 54-55, 483-491. https://doi.org/10.1016/0167-6105(94)00061-H
  35. Schrottle (2010), "Modelling the Fohn in the MIM laboratory", Thesis for the degree of Bachelor of Science Chair of Theoretical Meteorology, Department of Physics, Ludwig Maximilian University Munich.
  36. Seluchi, M., Norte, F.A., Satyamurty, P. and Chou, S.C. (2003a), "Analysis of three situations of the Foehn effect over the Andes (Zonda Wind) using the Eta-CPTEC regional model", Weather. Forecast., 18, 481-501. https://doi.org/10.1175/1520-0434(2003)18<481:AOTSOT>2.0.CO;2
  37. Seluchi, M., Saulo, A.C., Nicolini, M. and Satyamurty, P, (2003b), "The Northwestern Argentinean low: A study of two typical events", Mon. Weather Rev., 131, 2361-2378. https://doi.org/10.1175/1520-0493(2003)131<2361:TNALAS>2.0.CO;2
  38. Shamarock, W.C., Klemp, J.B., Gill, D.O., Barker, D.M., Wang, W. and Powers, J.G. (2008), "A description of the advanced research WRF version 3", Mesoscale and Microscale Meteorology Division, National Centre for Atmospheric Research.
  39. Stull, R. (2016), "Practical Meteorology: An Algebra-based Survey of Atmospheric Science", Sundog Publishing, LLC, ISBN: 0888651767.
  40. Ulke, A., Norte, F., Simonelli, S. and Viale, M. (2006), "Simulacion de un caso de viento Zonda con el modelo BRAMS", XIV Congreso Brasileiro de Meteorologia (XIV SBMET).
  41. Weather Underground, Inc., .
  42. Wittwer, A.R. and Moller, S.V. (2000), "Characteristics of the low speed wind tunnel of the UNNE", J. Wind Eng. Ind. Aerod., 84, 307-320. https://doi.org/10.1016/S0167-6105(99)00110-5