DOI QR코드

DOI QR Code

A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system

벼에서 CRISPR/Cas9 활용 고빈도 유전자 편집 방법

  • Jung, Yu Jin (Department of Horticultural Life Science, Hankyong National University) ;
  • Bae, Sangsu (Department of Chemistry, Hanyang University) ;
  • Lee, Geung-Joo (Department of Horticulture, Chungnam National University) ;
  • Seo, Pil Joon (Department of Biological Sciences, Sungkyunkwan University) ;
  • Cho, Yong-Gu (Department of Crop Science, Chungbuk National University) ;
  • Kang, Kwon Kyoo (Institute of Genetic Engineering, Hankyong National University)
  • 정유진 (국립한경대학교 원예생명과학과) ;
  • 배상수 (한양대학교 화학과) ;
  • 이긍주 (충남대학교 원예학과) ;
  • 서필준 (성균관대학교 생명과학과) ;
  • 조용구 (충북대학교 식물자원학과) ;
  • 강권규 (국립한경대학교 유전공학연구소)
  • Received : 2017.03.26
  • Accepted : 2017.03.27
  • Published : 2017.03.31

Abstract

The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.

CRISPR/Cas9 기술은 생명공학을 활용한 신품종 작물육성에 있어 패러다임 변혁을 가져다 줄 핵심 기반기술이다. 본 연구에서는 CRISPR/Cas9를 이용하여 유전자편집기술을 기존에 알려진 방법보다 쉽고 정확하게 실험 할 수 있도록 sgRNA 디자인, 벡터구축, 형질전환체 육성 및 분석 등을 자세히 기술하였다. sgRNA는 http://www.rgenome.net/ 사이트에서 NGG 영역을 중심으로 하여 target-up: 5'-ggcaGNNNNNNNNNNNNNNNNNNNN-3'과 target-down: 5'-aaacNNNNNNNNNNNNNNNNNNNNC-3'의 올리고를 디자인하였다. 식물형질전환용 벡터는 pPZP-Cas9-RGEN을 기본으로 하였으며, sgRNA의 프로모터는 OsU3를 이용하여 pPZP::35S::Cas9::PinII-OsU3::sgRNA::Bar-Gen 순으로 구축하였다. 형질전환체의 육성은 단기형질전환 Agrobacterium 법을 사용하였으며 재분화 식물체를 얻는데48일 정도 소요되었다. 형질전환체 유무는 genomic PCR 분석으로 single copy 선발은 TaqMan PCR로 분석하였다. 정밀유전자편집 식물체는 T1 세대에서 T-DNA 삽입되지 않은 식물체를 Bar-strip에 의해 선발하였다. 선발된 식물체의 sgRNA 영역의 염기배열 조사에 의해 유전자 편집 식물체를 육성하였다. 따라서 본 연구에서 CRISPR/Cas9 system에 의한 정밀유전자편집 기술을 이용하여 보다 빠르고 쉽고 경제적으로 유전자가 편집된 개체를 확보할 수 있었다. 본 실험에서 확립된 system은 상업용 식물 계통육성에 이용 가능하여 육종적 가치가 매우 클 것으로 사료된다.

Keywords

References

  1. Chen W, Qian Y, Wu X, Sun Y, Wu X, Cheng X (2014) Inhibiting replication of begomoviruses using artificial zinc finger nucleases that target viral-conserved nucleotide motif. Virus Genes 48:494-501 https://doi.org/10.1007/s11262-014-1041-4
  2. Durai S, Mani M, Kandavelou K, Wu J, Porteus MH, Chandrasegaran S (2005) Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res 18:5978-5990
  3. Endo M, Mikami, M, Toki S (2016) Biallelic gene targeting in rice. Plant Physiol 170:667-677 https://doi.org/10.1104/pp.15.01663
  4. Flemr M, Buhler M (2015) Single-Step Generation of Conditional Knockout Mouse Embryonic Stem Cells. Cell Reports 12: 709-716 https://doi.org/10.1016/j.celrep.2015.06.051
  5. Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP (2013) Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res 41:e188 https://doi.org/10.1093/nar/gkt780
  6. Jung YJ, Nou IS, Kang KK (2014) Overexpression of Oshsp16.9 gene encoding small heat shock protein enhances tolerance to abiotic stresses in rice. Plant Breed Biotech 2(4):370-379 https://doi.org/10.9787/PBB.2014.2.4.370
  7. Kim H, Kim S-T, Ryu J, Choi MK, Kweon J, Kang B-C, Ahn H-M, Bae S, Kim J, Kim J-S, Kim S-G (2016) A simple, flexible and high-throughput cloning system for plant genome editing via CRISPR-Cas system. J Integr Plant Biol 58(8):705-712 https://doi.org/10.1111/jipb.12474
  8. Lee HJ, Abdula SE, Jee MG, Jang DW, Cho YG (2011) High efficiency and Rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. J Plant Biotechnol 38:251-257 https://doi.org/10.5010/JPB.2011.38.4.251
  9. Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) Highefficiency TALEN-based gene editing produces disease-resistant rice. Nat Biotechnol 30:390-392 https://doi.org/10.1038/nbt.2199
  10. Park J, Bae S, Kim J-S (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31(24): 4014-4016 https://doi.org/10.1093/bioinformatics/btv537
  11. Park J, Lim K, Kim J-S, Bae S (2017) Cas-Analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics 33(2):286-288 https://doi.org/10.1093/bioinformatics/btw561
  12. Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JRJ (2011) Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 29:697-698 https://doi.org/10.1038/nbt.1934
  13. Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechnol J 13:791-800 https://doi.org/10.1111/pbi.12312
  14. Shukla VK, Doyon, Y, Miller JC, DeKelver RC, Moehle EA, Worden SE, Mitchell JC, Arnold NL, Gopalan S et al. (2009) Precise genome modification in the crop species Zea mays using zinc-finger nucleases. Nature 459:437-441 https://doi.org/10.1038/nature07992
  15. Subburaj S, Tu L, Jin Y-T, Bae S, Seo PJ, Jung YJ, Lee G-J (2016) Targeted Genome Editing, an Alternative Tool for Trait Improvement in Horticultural Crops. Hortic Environ Biotechnol 57(6):531-543 https://doi.org/10.1007/s13580-016-0281-8
  16. Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006) Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969-976 https://doi.org/10.1111/j.1365-313X.2006.02836.x
  17. Townsend JA, Wright DA, Winfrey RJ, Fu F, Maeder ML, Joung JK, Voytas DF (2009) High-frequency modification of plant genes using engineered zinc-finger nucleases. Nature 459: 442-445 https://doi.org/10.1038/nature07845
  18. Wang F, WangC, Liu P, Lei C, Hao W, Gao Y, Liu YG, Zhao K (2016) Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 11:e0154027 https://doi.org/10.1371/journal.pone.0154027
  19. Zhou X, Jacobs TB, Xue LJ, Harding SC, Tsai CJ (2015) Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate:CoA ligase specificity and redundancy. New Phytol 208:298-301 https://doi.org/10.1111/nph.13470

Cited by

  1. Stable expression of brazzein protein, a new type of alternative sweetener in transgenic rice vol.45, pp.1, 2018, https://doi.org/10.5010/JPB.2018.45.1.063