DOI QR코드

DOI QR Code

Optimization of a protocol for the production of transgenic lily plants via particle bombardment

유전자총 실험조건 최적화를 통한 형질전환 백합 식물체 생산

  • Kim, Jong Bo (Department of Biotechnology, College of Biomedical & Health Sciences, Glocal Campus. Konkuk university)
  • 김종보 (건국대학교 글로컬캠퍼스 의료생명대학 생명공학과)
  • Received : 2017.03.20
  • Accepted : 2017.03.20
  • Published : 2017.03.31

Abstract

Transgenic lily plants have been obtained after particle bombardment, using PDS-1000/He system and scale explants of lilies, followed by PPT (D-L-phosphinothricin) selection. In this study, scales of the lily plants cv. 'red flame' were bombarded with a plasmid containing the bar gene as a selectable marker, and the AtSIZ gene as a gene of interest, showing salt tolerance and drought tolerance respectively, and both being driven by the CaMV 35S promoter. For optimization of a protocol, factors which optimized and showed a high transformation efficiency under following conditions, were considered: a bombardment pressure of 1100 psi, a target distance of 6 cm and $1.0{\mu}m$ of gold particle, and 24-h pre-culture and post-culture on MS medium containing 0.2 M sorbitol and 0.2 M mannitol as osmoticum agents. After bombardment, all the bombarded scales of lily were transferred to MS medium without selective agents, for a week. Subsequently, these bombarded scales were transferred to a selection MS medium containing 10 mg/l PPT, and incubated for a month for further selection, after which they were cultured for another 4-8 weeks with a 4-week subculture regime on the same selection medium. After transferring into hormone-free MS medium, the PPT-resistant scales with shoots were successfully rooted and regenerated into plantlets. PCR analysis revealed that the surviving putatively transformed plantlets indicated the presence of both the bar gene and the AtSIZ gene. In conclusion, when 100 scales of lily cv. Red flame are bombarded, this study produced approximately 17-18 transgenic plantlets with an optimized bombardment protocol. The protocol described here can contribute to the breeding program of lilies.

유전자총을 이용한 형질전환 체계와 PPT (D-L-phosphinothricin) 선발을 통하여 나리 인편조직으로부터 형질전환 식물체가 획득되었다. 본 연구에서 나리 '레드플레임' 품종의 인편조직에 선발유전자로 제초제저항성 유전자인 bar 유전자 그리고 내염성과 내건성의 복합환경저항성을 나타내는 AtSIZ 유전자를 목적유전자로 가지고 있는 플라스미드를 금입자에 코팅해서 유전자총을 이용해서 형질전환 하였다. 이러한 형질전환 체계 확립을 위해 헬륨가스 압력은 1,100 psi, 금 입자크기는 $1.0{\mu}m$ 그리고 목적 절편체까지의 거리는 6 cm 그리고 유전자총 처리 24시간 전과 후에 0.2 M sorbitol과 0.2 M mannitol을 혼합해서 MS배지에 첨가한 프로토콜로부터 우수한 형질전환 결과를 나타내었다. 유전자총 발사 처리 후, 1주간 선발제로 사용되는 PPT가 없는 MS 배지로 이식하여 배양 후, PPT 10 mg/l이 첨가된 선발배지에서 4주 간격의 계대배양을 통해 8-12주간 선발과정을 거친다. PPT 선발 배지에서 생존한 신초가 형성된 형질전환 나리 인편 조직들을 호르몬이 없는 MS 배지로 다시 옮겨주면 발근 및 추가 생육이 이루어진다. 생존한 형질전환 나리 기내 소식물체들로부터 PCR 검정을 통해 선발유전자인 bar 유전자 그리고 목적유전자인 AtSIZ 유전자의 도입이 확인되었다. 결론적으로 100여개의 나리 인편조직을 본 연구에서 확립된 유전자총 실험프로토콜을 이용하면 대략적으로 형질전환 나리 17-18 개체를 획득할 수 있으며 본 연구에 기술된 유전자 총 매개 형질전환 체계는 추가적인 보완이 이루어지면, 향후 나리 육종 프로그램에 기여할 것이다.

Keywords

References

  1. Azadi P, Chin PD, Kuroda K, Khan SR, Mii M (2010) Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformation in Lilium. Plant Cell Tiss Organ Cult 101:201-209 https://doi.org/10.1007/s11240-010-9677-9
  2. Bakhshaie M, Khosravi S, Azadi P, Bagheri H, Van Tuyl JM (2016) Biotechnological advance in Lilium. Plant Cell Rep 35:1799-1826 https://doi.org/10.1007/s00299-016-2017-8
  3. Deng XY, Wei ZM, An HL (2001) Transgenic peanut plants obtained by particle bombardment via somatic embryogenesis regeneration system. Cell Res 11:156-160 https://doi.org/10.1038/sj.cr.7290081
  4. Gao G, Long D, Lenk I, Nielsen KK (2008) Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacterium-mediated transformation and particle bombardment. Plant Cell Rep 27: 1601-1609 https://doi.org/10.1007/s00299-008-0578-x
  5. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  6. Hiei Y, Komari T, Kubo T (1997) Transformation of rice mediated by Agrobacterium tumefaciens. Plant Mol Biol 35:205-218 https://doi.org/10.1023/A:1005847615493
  7. Hoshi Y, Kondo M, Mori S, Adachi Y, Nkano M, Kobayashi H (2004) Production of transgenic lily plants by Agrobacteriummediated transformation. Plant Cell Rep 22:359-364 https://doi.org/10.1007/s00299-003-0700-z
  8. Hoshino Y, Kashihara Y, Hirano T, Murata N, Shinoda K (2008) Plant regeneration from suspension cells induced from hypocotyls derived from interspecific cross Alstroemeria pelegrina A. magenta and transformation with Agrobacterium tumefaciens. Plant Cell Tiss Organ Cult 94:45-54 https://doi.org/10.1007/s11240-008-9385-x
  9. Irifune K, Morimoto Y, Uchihama M (2003) Production of herbicide resistant transgenic lily plants by particle bombardment. J Jpn Soc Hort Sci 72:511-516 https://doi.org/10.2503/jjshs.72.511
  10. Kamo K, Han BH (2008) Biolistic-mediated transformation of Lilium longiflorum cv. Nellie white. Hortscience 43(6):1864-1869
  11. Kim JB, Raemakers CJJM, Jacobsen E, Visser RGF (2007) Efficient production of transgenic Alstroemeria plants by using Agrobacterium tumefaciens. Ann Appl Biol 151:401-412 https://doi.org/10.1111/j.1744-7348.2007.00180.x
  12. Langeveld SA, Gerrits MM, Derks Anton FLM, Boonekamp PM, Bol JF (1995) Transformation of lily by Agrobacterium. Euphytica 85:97-100 https://doi.org/10.1007/BF00023935
  13. Li SH, Kuoh CS, Chen YH, Chen HH, Chen WH (2005) Osmotic sucrose enhancement of single-cell embryogenesis and transformation efficiency in Oncidium. Plant Cell Tiss Organ Cult 81:183-192 https://doi.org/10.1007/s11240-004-4955-z
  14. Lin HS, van der Toorn C, Raemakers CJJM, Visser RGF, De Jeu MJ, Jacobsen E (2000) Genetic transformation of Alstroemeria using particle bombardment. Mol Breed 6:369-377 https://doi.org/10.1023/A:1009671105610
  15. Liu J, Zhang J, Xu B, Jia C, Zhang J, Tan G, Jin Z (2011) Regeneration and production of transgenic Lilium longiflorum via Agrobacterium tumefaciens. In Vitro Cell Dev Biol-Plant 47:348-356 https://doi.org/10.1007/s11627-010-9336-1
  16. Mercuri A, De Benedetti L, Bruna S, Bregliano R, Bianchini C, Foglia G, Schiva T (2003) Agrobacterium-mediated transformation with rol genes of Lilium longiflorum Thunb. Acta Hort 612:129-136
  17. Ministry of Food, Agriculture, Forestry and Fisheries (2015) Statistics of floriculture cultivation in 2015.
  18. Morrish F, Songstad DD, Armstrong CL, Fromm M (1993) Micro-projectile bombardment: a method for the production of transgenic cereal crop plants and the functional analysis of genes. In: Hiatt A (ed), Transgenic plants: fundamentals and applications. Marcel Dekker, New York, pp 131-171
  19. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Planta 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  20. Nam SW, Lee HK (2004) Agrobacterium-mediated transformation from callus pretreated with particle bombardment in Lilium lancifolium Thumb. Kor J Plant Biotechnol 31:13-17 https://doi.org/10.5010/JPB.2004.31.1.013
  21. Ogaki M, Furuichi Y, Kuroda K, Chin DP, Ogawa Y, Mii M (2008) Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium. Plant Cell Rep 27: 699-705 https://doi.org/10.1007/s00299-007-0481-x
  22. Park NB (1997) Proceedings of symposium on the commercialization of lily production and breeding. Hort. Res. Institute RDA. 68-97
  23. Popowich EA, Firsov AP, Mitiouchkina TY, Filipenya VL, Dolgov SV, Reshetnikov VN (2007) Agrobacterium-mediated transformation of Hyacinthus orientalis with thaumatin II gene to control fungal disease. Plant Cell Tiss Organ Cult 90:237-244 https://doi.org/10.1007/s11240-007-9254-z
  24. Roh HS, Kim MS, Lee YM, Lee YR, Lee SI, Kim JB (2011) Optimization of particle gun-mediated transformation system in Cymbidium. J Plant Biotechnol 38:293-300 https://doi.org/10.5010/JPB.2011.38.4.293
  25. Roh HS, Kim MS, Baek SY, Kim JB (2013) Comparison of transformation efficiency by using Agrobacterium and particle bombardment in Cymbidium and Phalaenopsis. Flower Res J 21(4):199-205 https://doi.org/10.11623/frj.2013.21.4.37
  26. Roh HS and Kim JB (2014) Effects of osmoticum treatments and shooting chances on the improvement of particle gun-mediated transformation in Phalaenopsis. J Plant Biotechnol 41:216-222 https://doi.org/10.5010/JPB.2014.41.4.216
  27. Sanford JC, Smith FD, Russel JA (1993) Optimizing the biolistic process for different biological applications. Methods Enzymol 217:483-510
  28. Vain P, Mcmullen MD, Finer JJ (1993) Osmoticum treatment enhances particle bombardment-mediated transient and stable transformation of maize. Plant Cell Rep 12:84-88
  29. Wang Y, van Kronenburg B, Menzel T, Maliepaard C, Shen X, Krens F (2012) Regeneration and Agrobacterium-mediated transformation of multiple lily cultivars. Plant Cell Tiss Organ Cult 111:113-122 https://doi.org/10.1007/s11240-012-0172-3
  30. Watad AA, Yun DJ, Matsumoto T, Niu X, Wu Y, Kononowicz AK, Bressan RA, Hasegawa PM (1998) Microprojectile bombardmentmediated transformation of Lilium longiflorum. Plant Cell Rep 17:262-267 https://doi.org/10.1007/s002990050389
  31. Wilmink A, van de Ven BCE, Dons JJM (1992) Expression of the GUS-gene in the monocot tulip after introduction by particle bombardment and Agrobacterium. Plant Cell Rep 11:76-80 https://doi.org/10.1007/BF00235257
  32. Woodcock HBD, Stearn WT (1950) Lilies of the world. Scribners, New York
  33. Yang J, Lee HJ, Shin DH, Oh SK, Seon JH, Paek KY, Han KH (1999) Genetic transformation of Cymbidium orchid by particle bombardment. Plant Cell Rep 18:978-984 https://doi.org/10.1007/s002990050694

Cited by

  1. Optimization of in vitro lily culture system with different treatments of taurine vol.44, pp.4, 2017, https://doi.org/10.5010/JPB.2017.44.4.484