DOI QR코드

DOI QR Code

Isolation and Expression of Dormancy-associated protein 1 (DRM1) in Poplar (Populus alba × P. glandulosa)

현사시나무에서 Dormancy-associated protein 1 (DRM1) 유전자의 분리와 발현특성 구명

  • Yoon, Seo-Kyung (Department of Forest Genetic Resources, National Institute of Forest Science) ;
  • Bae, Eun-Kyung (Department of Forest Genetic Resources, National Institute of Forest Science) ;
  • Choi, Hyunmo (Department of Forest Genetic Resources, National Institute of Forest Science) ;
  • Choi, Young-Im (Department of Forest Genetic Resources, National Institute of Forest Science) ;
  • Lee, Hyoshin (Department of Forest Genetic Resources, National Institute of Forest Science)
  • 윤서경 (국립산림과학원 산림유전자원부) ;
  • 배은경 (국립산림과학원 산림유전자원부) ;
  • 최현모 (국립산림과학원 산림유전자원부) ;
  • 최영임 (국립산림과학원 산림유전자원부) ;
  • 이효신 (국립산림과학원 산림유전자원부)
  • Received : 2017.02.01
  • Accepted : 2017.03.17
  • Published : 2017.03.31

Abstract

Dormancy-associated protein (DRM) is involved in the dormancy physiology of plants and is conserved in almost all plant species. Recent studies found that DRM genes are involved in the abiotic stress response, and characterization studies of these genes have been conducted in several plants. However, few studies have focused on DRM genes in woody plants. Therefore, in this study, cDNA coding for DRM (PagDRM1) was isolated from poplar (Populus alba ${\times}$ P. glandulosa), and its structure and expression characteristics were investigated. PagDRM1 encodes a putative protein composed of 123 amino acids, and the protein contains two conserved domains (Domain I and Domain II). PagDRM1 is present as one or two copies in the poplar genome. Its expression level was highest in the stem, followed by mature leaves, roots, and flowers. During the growth of cultured cells in suspension, PagDRM1 was highly expressed from the late-exponential phase to the stationary phase. In addition, PagDRM1 expression increased in response to drought, salt stress, and treatment with plant hormones (e.g., abscisic acid and gibberellic acid). Therefore, we suggested that PagDRM1 not only plays an important role in the induction of dormancy, but also contributes to stress tolerance in plants.

Dormancy-associated protein (DRM)은 식물의 휴면생리에 관여하는 대표적인 단백질로 거의 모든 식물에 보존되어 있다. 최근 DRM 유전자가 비생물적 스트레스 반응에 관여하는 것으로 알려지면서 이 유전자의 특성구명 연구가 여러 식물에서 이루어지고 있다. 그러나 아직까지 나무에서는 DRM 유전자에 대한 연구가 거의 없는 실정이다. 따라서 본 연구에서는 DRM 유전자를 현사시나무(Populus alba ${\times}$ P. glandulosa)에서 분리하여 이를 PagDRM1이라 명명하고, 유전자의 구조와 발현특성을 조사하였다. PagDRM1 유전자는 123개의 아미노산으로 구성된 단백질을 암호화하며, 2개의 영역(Domain I과 Domain II)이 잘 보존되어 있다. PagDRM1은 현사시나무의 염색체에 1 ~ 2 copy가 존재하며, 줄기에서 가장 높게 발현하였고 성숙 잎, 뿌리 및 꽃에서도 높은 발현 수준을 나타내었다. 현탁배양세포의 생장주기에서는 늦은 지수생장기부터 정지기까지 높게 발현하였다. 또한 PagDRM1은 건조와 염 스트레스에 반응하여 발현이 증가하는 것으로 나타났다. 식물호르몬 처리에 의해서는 ABA와 GA 처리에 의한 발현 증가를 나타내었다. 따라서 PagDRM1은 식물의 휴면유도 과정에서 중요한 역할을 할 뿐만 아니라 환경 스트레스 내성에도 기여하는 것으로 생각된다.

Keywords

References

  1. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63: 3523-3543 https://doi.org/10.1093/jxb/ers100
  2. Correa LGG, Riano-Pachon DM, Schrago CG, Santos RV, Mueller-Roeber B, Vincentz M (2008) The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes. PLoS ONE 3:e2944 https://doi.org/10.1371/journal.pone.0002944
  3. Choi YI, Noh EW, Han MS, Yi YS (2001) Estimation of cellular damages caused by paraquat and lead using a cell culture system. Plant Biotechnol J 3:83-88
  4. Gepstein S, Glick BR (2013) Strategies to ameliorate abiotic stressinduced plant senescence. Plant Mol Biol 82:623-633 https://doi.org/10.1007/s11103-013-0038-z
  5. Golldack D, Luking I, Yang OS (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383-1391 https://doi.org/10.1007/s00299-011-1068-0
  6. Govind G, Harshavardhan VT, Patricia JK, Dhanalakshmi R, Senthil Kumar M, Sreenivasulu N, Udayakumar M (2009) Identification and functional validation of a unique set of drought induced genes preferentially expressed in response to gradual water stress in peanut. Mol Genet Genomics 281: 591-605 https://doi.org/10.1007/s00438-009-0432-z
  7. Hosseini R, Mulligan BJ (2001) Application of rice (Oryza sativa L.) suspension culture in studying senescence in vitro (I). Single strand preferring nuclease activity. Electron J Biotechnol 5: 1-13
  8. Hwang EW, Kim KA, Park SC, Jeong MJ, Byun MO, Kwon HB (2005) Expression profiles of hot pepper (Capsicum annuum) genes under cold stress conditions. J Biosci 30:657-667 https://doi.org/10.1007/BF02703566
  9. Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses Teosinte Branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109-1117 https://doi.org/10.1104/pp.105.074856
  10. Kebrom TH, Brutnell TP, Finlayson SA (2010) Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signaling pathways. Plant Cell Environ 33:48-58
  11. Kim HB, Lee H, Oh CJO, An CS (2007) Expression of EuNODARP1 encoding auxin-repressed protein homolog is upregulated by auxin and localized to the fixation zone in root nodules of Elaeagnus umbellate. Mol Cells 23:115-121
  12. Kim YH, Kim MD, Choi YI, Park SC, Yun DJ, Noh EW, Lee HS, Kwak SS (2011) Transgenic poplar expressing Arabidopsis NDPK2 enhances growth as well as oxidative stress tolerance. Plant Biotechnol J 9: 334-347 https://doi.org/10.1111/j.1467-7652.2010.00551.x
  13. Kirilenko AP, Sedjo RA (2007) Climate change impacts on forestry. PNAS 104: 19697-19702 https://doi.org/10.1073/pnas.0701424104
  14. Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, paraand ecodormancy: physiological terminology and classification for dormancy research. Hortscience 22:371-377
  15. Lee HS, Lee JS, Noh EW, Bae EK, Choi YI, Han MS (2005) Generation and analysis of expressed sequence tags from poplar suspension cells. Plant Sci 169:1118-1124 https://doi.org/10.1016/j.plantsci.2005.07.013
  16. Lee HS, Bae EK, Park SY, Sjodin A, Lee JS, Noh EW, Jansson S (2007) Growth-phase-dependent gene expression profiling of poplar suspension cells. Physiol Plantarum 131:599-613 https://doi.org/10.1111/j.1399-3054.2007.00987.x
  17. Lee J, Han CT, Hur Y (2013) Molecular characterization of the Brassica rapa auxin-repressed, superfamily genes, BrARP1 and BrDRM1. Mol Biol Rep 40:197-209 https://doi.org/10.1007/s11033-012-2050-9
  18. Liu CC, Liu CF, Wang HX, Shen ZY, Yang CP, Wei ZG (2011) Identification and analysis of phosphorylation status of proteins in dormant terminal buds of poplar. BMC Plant Biol 11:158-173 https://doi.org/10.1186/1471-2229-11-158
  19. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: 2002-2007
  20. Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R (2002) Mechanisms of dormancy and drought tolerance in the desert legume Retama raetam. Plant J 31:319-330 https://doi.org/10.1046/j.1365-313X.2002.01364.x
  21. Rae GM, David D, Wood M (2013) The dormancy marker DRM1/ARP associated with dormancy but a broader role In planta. Dev Biol J (Article ID 632524)
  22. Rae GM, Uversky VN, David K, Wood M (2014) DRM1 and DRM2 expression regulation: potential role of splice variants in response to stress and environmental factors in Arabidopsis. Mol Genet Genomics 289:317-332 https://doi.org/10.1007/s00438-013-0804-2
  23. Shinozaki K, Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 3:217-223 https://doi.org/10.1016/S1369-5266(00)00067-4
  24. Soeda Y, Konings MCJM, Vorst O, Houwelingen AMML, Stoopen GM, Maliepaard CA, Kodde J, Bino RJ, Groot SPC, Geest AHM (2005) Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level. Plant Physiol 137:354-368 https://doi.org/10.1104/pp.104.051664
  25. Stafstrom JP, Ripley BD, Devitt ML, Drake B (1998) Dormancyassociated gene expression in pea acillary buds. Cloning and expression of PsDRM1 and PsDRM2. Planta 205:547-552 https://doi.org/10.1007/s004250050354
  26. Stafstrom JP (2000) Regulation of growth and dormancy in pea axillary buds. In: JDVAJ Crabbe (ed) Dormancy in Plants. CAB International, Wallingford 331-346
  27. Steiner C, Bauer J, Amrhein N, Bucher M (2003) Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum. Biochim Biophys Acta 1625:123-133 https://doi.org/10.1016/S0167-4781(02)00598-5
  28. Suzuki N (2016) Hormone signaling pathways under stress combinations. Plant Signal Behav 11:e1247139 https://doi.org/10.1080/15592324.2016.1247139
  29. Tatematsu K, Ward S, Leyser O, Kamiya Y, Nambara E (2005) Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol 138:757-766 https://doi.org/10.1104/pp.104.057984
  30. Ueno S, Klopp C, Leple C, Derory J, Noirot C, Leger V, Prince E, Kremer A, Plomion C, Provost GL (2013) Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing. BMC Genomics 14:236 https://doi.org/10.1186/1471-2164-14-236
  31. Vriezen WH, Feron R, Maretto F, Keijman J, Mariani C (2008) Changes in tomato ovary transcriptome demonstrate complex hormonal regultation of fruit set. New Phytol 177:60-76
  32. Wood M, Rae GM, Wu RM, Walton EF, Xue B, Hellens RP, Uversky VN (2013) Actinidia DRM1-an intrinsically disordered protein whose mRNA expression is inversely correlated with spring budbreak in kiwifruit. PLoS ONE 8:e57354 https://doi.org/10.1371/journal.pone.0057354