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Review on State of Charge Estimation Methods for Li-Ion 
Batteries

1. INTRODUCTION

A battery, as a type of energy-storage equipment, boasts of stable 
voltage and being a reliable power supply. Battery energy storage 
systems are extensively applied to such fields as micro-grids, 
uninterrupted power supplies (UPS), and electric automobiles. 
In a micro-grid, a battery energy-storage system can provide grid 
connection power adjustment and peak regulation, isolated power 
grid operation, improvement of power quality, promotion of micro-
power source performances, and other related functions [1-3]; and 
is a core component of a UPS, an electric automobile, and other 
applications. Batteries are usually connected in series to form a 
battery pack to satisfy requirements for high voltage and large 
capacity; during usage, because of differences in the performance 
of each single battery, ambient temperature changes, excessive 

charge and excessive discharge, and other factors, the performance 
of a battery pack depends on the single battery within the pack that 
performs the worst; hence the service life of a battery pack is usually 
shorter than the service life of single batteries as provided by their 
manufacturers. If a battery pack is used extensively without any 
management measure, its performance will deteriorate quickly to 
an unserviceable state earlier than scheduled. Therefore, a reliable 
battery-management system (BMS) is needed to carry out effective 
management of the battery [4-6]. BMS can increase the service 
efficiency of a battery, extend the service life, lower the operating 
cost, and raise the reliability of the battery pack. The main functions 
of a BMS include control of the battery's charge and discharge, 
battery parameter measurement (voltage, current, temperature, 
etc.), battery pack equivalence control, state of charge (SOC) 
estimation, battery service-life estimation, and failure diagnosis, 
where SOC estimation is the core and a difficult point in research 
on BMS. An accurate SOC can be important for battery charge and 
discharge control and battery equivalence, and for a battery used 
in an electric automobile, SOC can also indicate the remaining 
mileage accurately.

The SOC is a number indicating the remaining power in the 
battery and is an important parameter of the battery, but the SOC 
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of a battery cannot be measured directly by a sensor; it is indirectly 
estimated via various algorithms. Li-ion batteries are one of the best 
chemical batteries by far, boasting of high service voltage, small 
volume, light weight, high energy density, zero memory effect, low 
self-discharge rate, long cycle life, and other merits [7], but only an 
accurate estimation of a Li-ion battery's SOC can give full play to 
its power performance [8], prevent impacts to its safety and service 
life resulting from excessive charge and discharge, and maximally 
guarantee its reliable operation, so that the cost can be lowered and 
the economic benefit raised.

This article summarizes traditional SOC estimation methods, 
i.e., the discharge experiment method, the ampere-hour integral 
method, the open circuit voltage method, the internal impedance 
method, a new intelligent algorithm (namely, the Kalman filter 
method), the artificial neural network method, and electrochemical 
impedance spectroscopy, with discussion of their advantages and 
disadvantages in application.

2. DEFINITION OF THE SOC

The SOC of a battery reflects its residual capacity, which is, at 
a certain discharge rate, the ratio of the present battery residual 
capacity to its overall available capacity. Its mathematical expression 
is [9]
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Where SOC(t0) is the state of charge at time t0; I(t) is the 

charged (positive value) or discharged (negative value) current; 
QN is the rated capacity of the battery; and ɳ(t)is the 
compensation coefficient, which is used to compensate for 
influences of such factors as temperature, charged and 
discharged rate, aging, or self-discharge rate. The ampere-hour 
integral algorithm is simple, stable at work, and easy to use from 
an engineering perspective. It is an open-loop algorithm, where 
the error of the current testing signal accumulates in the SOC 
estimation value, and the accumulated error grows larger 
gradually with the increase of the charged and discharged cycles. 
It is quite difficult to discover the compensation coefficient ɳ(t), 
especially when taking aging and self-discharge rate into 
account. Therefore the method has the following disadvantages:  

(1) it requires a fairly high current testing frequency and 
accuracy, otherwise it will increase the integral error;  

(2) the battery's charge and discharge efficiencies are related 
to its SOC value, current, temperature, aging, impedance change 
rate, service life, and other factors, so it is difficult to measure 
accurately, resulting in the gradual increase of the SOC 
estimation error, and then the accumulated error;  

(3) in situations of high temperature or drastic current 
fluctuations, the battery capacity will change, and the method 
cannot easily yield an accurate result.  

In conclusion, the method has measurement errors when 
charging and discharging current fluctuates widely, so it easily 
leads to accumulated SOC errors and cannot take full 
consideration of the battery's efficiency on charge and discharge. 
Moreover, the error becomes larger when the temperature and 
the load fluctuate drastically. Such issues as the battery's self-
discharge, charge-discharge efficiency, and accurate 
measurement of current are the difficulties with the ampere-hour 
method. 
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basically, at a monotonic increasing trend. Therefore, the SOC 
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In conclusion, the method has measurement errors when 
charging and discharging current fluctuates widely, so it easily leads 
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the battery's efficiency on charge and discharge. Moreover, the 
error becomes larger when the temperature and the load fluctuate 
drastically. Such issues as the battery's self-discharge, charge-
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3.3 Open circuit voltage method

Researchers have shown that, when a Li-ion battery is at a 
static state, its open-circuit voltage (OCV) is related to the SOC, 
basically, at a monotonic increasing trend. Therefore, the SOC can 
be estimated by means of the OCV [14-16]; it can be measured 
directly and thus is the simplest method for SOC estimation. But 
the Li-ion battery has to be left unused for a long time in order to 
ensure its OCV has reached a steady value, from which the OCV-
SOC relationship can be estimated more accurately. The SOC can 
also be estimated by estimation of the battery's electromotive force; 
therefore, the method is only applicable when the Li-ion battery is 
at a static state.

4. NEW INTELLIGENT ALGORITHM

4.1 Kalman filter method

The Kalman filter method [17-25] is a mature technology for 
status estimation of dynamic positioning, control of dynamic 
systems, navigation and communication technologies, and other 
applications. In recent years, the Kalman filter has also been used 
to estimate the Li-ion battery SOC. The Kalman filter consists of a 
group of recursive equations that perform evaluations repeatedly 
when the system is in operation. There is no need to consider many 
past input signals; only the last input signal is needed when each 
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recursive equation is performed.
Figure 1 shows the Kalman filter block diagram. U(k) is the 

known input vector of the system; B(k), A(k), C(k), and D(k) describe 
the dynamic of the system; W(k) and V(k) are independent zero-
mean Gaussian white noise; and Y(k) is the output vector of the 
system. The Kalman filter status equation and observation equation 
for the Li-ion battery model are as follows:
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 

 

)]([)(ˆ kXEkX                             (5a) 
 

}])(ˆ)(][)(ˆ)({[ T
k

kXkXkXkXE 
        (5b) 

 
The initialization is usually not accurate, but that does not 

affect the Kalman filter, because the system will converge 
quickly after several rounds of recursive operation. The Kalman 
filter estimates the status value, system output, and error 
covariance matrix at each sampling interval )(ˆ kX , )(ˆ kY ,

k . 

 
)1()1()()1()(ˆ   kUkBkXkAkX         (6a) 

 

W

t

kk
kAkA   





2
)1()1(               (6b) 

 
Then the observed value is used to update the status value and 

the error covariance matrix )(ˆ kX ,

k . 

 

)]}()()(ˆ[

)()(){()(ˆ)(ˆ

kUkDkX

kCkYkLkXkX








             (7a) 

 

 


kk
kCkLI )]()([                           (7b) 

 
The updated status value after the measurement equals the 
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Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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X(k) is the status vector at time K, U(k) is the input vector of the 
system, W(k) and V(k) are none inter-related zero-mean Gaussian 
white noise, Y(k) is the output vector of the system, and the 
assumption is:
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transposition of the matrix. Even though W (k) and V(k) do not 
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The updated status value after the measurement equals the 
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transposition of the matrix. Even though W (k) and V(k) do not meet 
the assumption in reality, the system can still work well because 
of the robustness of the Kalman filter [26]. The system has to be 
initialized before the Kalman filter:
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The updated status value after the measurement equals the 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
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The updated status value after the measurement equals the 
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several rounds of recursive operation. The Kalman filter estimates 
the status value, system output, and error covariance matrix at each 
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where E[*] indicates the mathematic expectation, and T is the 
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The updated status value after the measurement equals the 
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and the Kalman gain L(k) can be calculated by the following 
equation:  

 
1

][)(
  

Vk
T
kkk

T
k CCCkL                    (8) 

 
If the present estimated status value has a comparatively large 

deviation, it will lead to a larger 


k , which further enlarges 

L(k), and the updated status value
)(ˆ kX after the measurement 

will be larger; a smaller 


k leads to a smaller L(k), and the 

updated status value
)(ˆ kX after the measurement will be smaller. 

Similarly, if the observation noise V(k) is comparatively large, 
V  will become larger and L(k) smaller; therefore, the Kalman 

gain L(k) correlates to the signal-noise ratio; when the signal-
noise ratio is low, the Kalman gain is small, and if the signal-
noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 

 
 

 
 

.

Trans. Electr. Electron. Mater. 10(1) 21 (2009): G.-D. Hong et al. 21 

accurately. The SOC can also be estimated by estimation of the 
battery's electromotive force; therefore, the method is only 
applicable when the Li-ion battery is at a static state. 
 
 

4 New Intelligent Algorithm 

 
4.1Kalman Filter Method 

 
The Kalman filter method [17-25] is a mature technology for 

status estimation of dynamic positioning, control of dynamic 
systems, navigation and communication technologies, and other 
applications. In recent years, the Kalman filter has also been 
used to estimate the Li-ion battery SOC. The Kalman filter 
consists of a group of recursive equations that perform 
evaluations repeatedly when the system is in operation. There is 
no need to consider many past input signals; only the last input 
signal is needed when each recursive equation is performed. 

Fig.1 shows the Kalman filter block diagram. U(k) is the 
known input vector of the system; B(k), A(k), C(k), and D(k) 
describe the dynamic of the system; W(k) and V(k) are 
independent zero-mean Gaussian white noise; and Y(k) is the 
output vector of the system. The Kalman filter status equation 
and observation equation for the Li-ion battery model are as 
follows: 

 
)()()()()()1( kWkUkBkXkAkX       (3a) 

 
)()()()()()( kVkUkDkXkCkY           (3b) 

 
)(kX is the status vector at time K, U(k) is the input vector 

of the system, W(k) and V(k) are none inter-related zero-mean 
Gaussian white noise, Y(k) is the output vector of the system, 
and the assumption is: 

 









)(,0

)(,
])()([

kn
kn

kWnWE WT                   (4a) 

 









)(,0

)(,
])()([

kn
kn

kVnVE VT                    (4b) 

 
where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
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The updated status value after the measurement equals the 
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where E[*] indicates the mathematic expectation, and T is the 
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gain L(k) correlates to the signal-noise ratio; when the signal-
noise ratio is low, the Kalman gain is small, and if the signal-
noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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estimated status value plus the Kalman gain L(k) multiplied by the 
difference between the actual value and the estimated value, and 
the Kalman gain L(k) can be calculated by the following equation: 

Trans. Electr. Electron. Mater. 10(1) 21 (2009): G.-D. Hong et al. 21 

accurately. The SOC can also be estimated by estimation of the 
battery's electromotive force; therefore, the method is only 
applicable when the Li-ion battery is at a static state. 
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independent zero-mean Gaussian white noise; and Y(k) is the 
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and observation equation for the Li-ion battery model are as 
follows: 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 
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The initialization is usually not accurate, but that does not 

affect the Kalman filter, because the system will converge 
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The updated status value after the measurement equals the 

estimated status value plus the Kalman gain L(k) multiplied by 
the difference between the actual value and the estimated value, 
and the Kalman gain L(k) can be calculated by the following 
equation:  
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If the present estimated status value has a comparatively large 

deviation, it will lead to a larger 
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Similarly, if the observation noise V(k) is comparatively large, 
V  will become larger and L(k) smaller; therefore, the Kalman 

gain L(k) correlates to the signal-noise ratio; when the signal-
noise ratio is low, the Kalman gain is small, and if the signal-
noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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If the present estimated status value has a comparatively large 
deviation, it will lead to a larger 
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accurately. The SOC can also be estimated by estimation of the 
battery's electromotive force; therefore, the method is only 
applicable when the Li-ion battery is at a static state. 
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independent zero-mean Gaussian white noise; and Y(k) is the 
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follows: 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 
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The updated status value after the measurement equals the 

estimated status value plus the Kalman gain L(k) multiplied by 
the difference between the actual value and the estimated value, 
and the Kalman gain L(k) can be calculated by the following 
equation:  
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Similarly, if the observation noise V(k) is comparatively large, 
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gain L(k) correlates to the signal-noise ratio; when the signal-
noise ratio is low, the Kalman gain is small, and if the signal-
noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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accurately. The SOC can also be estimated by estimation of the 
battery's electromotive force; therefore, the method is only 
applicable when the Li-ion battery is at a static state. 
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The Kalman filter method [17-25] is a mature technology for 

status estimation of dynamic positioning, control of dynamic 
systems, navigation and communication technologies, and other 
applications. In recent years, the Kalman filter has also been 
used to estimate the Li-ion battery SOC. The Kalman filter 
consists of a group of recursive equations that perform 
evaluations repeatedly when the system is in operation. There is 
no need to consider many past input signals; only the last input 
signal is needed when each recursive equation is performed. 

Fig.1 shows the Kalman filter block diagram. U(k) is the 
known input vector of the system; B(k), A(k), C(k), and D(k) 
describe the dynamic of the system; W(k) and V(k) are 
independent zero-mean Gaussian white noise; and Y(k) is the 
output vector of the system. The Kalman filter status equation 
and observation equation for the Li-ion battery model are as 
follows: 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 
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The initialization is usually not accurate, but that does not 

affect the Kalman filter, because the system will converge 
quickly after several rounds of recursive operation. The Kalman 
filter estimates the status value, system output, and error 
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The updated status value after the measurement equals the 

estimated status value plus the Kalman gain L(k) multiplied by 
the difference between the actual value and the estimated value, 
and the Kalman gain L(k) can be calculated by the following 
equation:  
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Similarly, if the observation noise V(k) is comparatively large, 
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noise ratio is low, the Kalman gain is small, and if the signal-
noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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accurately. The SOC can also be estimated by estimation of the 
battery's electromotive force; therefore, the method is only 
applicable when the Li-ion battery is at a static state. 
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systems, navigation and communication technologies, and other 
applications. In recent years, the Kalman filter has also been 
used to estimate the Li-ion battery SOC. The Kalman filter 
consists of a group of recursive equations that perform 
evaluations repeatedly when the system is in operation. There is 
no need to consider many past input signals; only the last input 
signal is needed when each recursive equation is performed. 

Fig.1 shows the Kalman filter block diagram. U(k) is the 
known input vector of the system; B(k), A(k), C(k), and D(k) 
describe the dynamic of the system; W(k) and V(k) are 
independent zero-mean Gaussian white noise; and Y(k) is the 
output vector of the system. The Kalman filter status equation 
and observation equation for the Li-ion battery model are as 
follows: 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 
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The initialization is usually not accurate, but that does not 

affect the Kalman filter, because the system will converge 
quickly after several rounds of recursive operation. The Kalman 
filter estimates the status value, system output, and error 
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the error covariance matrix )(ˆ kX ,
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The updated status value after the measurement equals the 

estimated status value plus the Kalman gain L(k) multiplied by 
the difference between the actual value and the estimated value, 
and the Kalman gain L(k) can be calculated by the following 
equation:  
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noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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accurately. The SOC can also be estimated by estimation of the 
battery's electromotive force; therefore, the method is only 
applicable when the Li-ion battery is at a static state. 
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status estimation of dynamic positioning, control of dynamic 
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used to estimate the Li-ion battery SOC. The Kalman filter 
consists of a group of recursive equations that perform 
evaluations repeatedly when the system is in operation. There is 
no need to consider many past input signals; only the last input 
signal is needed when each recursive equation is performed. 

Fig.1 shows the Kalman filter block diagram. U(k) is the 
known input vector of the system; B(k), A(k), C(k), and D(k) 
describe the dynamic of the system; W(k) and V(k) are 
independent zero-mean Gaussian white noise; and Y(k) is the 
output vector of the system. The Kalman filter status equation 
and observation equation for the Li-ion battery model are as 
follows: 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 
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The initialization is usually not accurate, but that does not 

affect the Kalman filter, because the system will converge 
quickly after several rounds of recursive operation. The Kalman 
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The updated status value after the measurement equals the 

estimated status value plus the Kalman gain L(k) multiplied by 
the difference between the actual value and the estimated value, 
and the Kalman gain L(k) can be calculated by the following 
equation:  
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gain L(k) correlates to the signal-noise ratio; when the signal-
noise ratio is low, the Kalman gain is small, and if the signal-
noise ratio is high, the Kalman gain is large. 

Generally speaking, the Kalman filter can strongly repress 
noise and correct initial errors, and thus can be used to evaluate 
the estimation error; on the other hand, the Kalman filter 
depends on the accuracy of the model and the parameters, and 
because the Li-ion battery is nonlinear, the Kalman filter method 
may generate linear errors. 
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where E[*] indicates the mathematic expectation, and T is the 
transposition of the matrix. Even though W (k) and V(k) do not 
meet the assumption in reality, the system can still work well 
because of the robustness of the Kalman filter [26]. The system 
has to be initialized before the Kalman filter: 
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The updated status value after the measurement equals the 
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and correct initial errors, and thus can be used to evaluate the 
estimation error; on the other hand, the Kalman filter depends on 
the accuracy of the model and the parameters, and because the Li-
ion battery is nonlinear, the Kalman filter method may generate 
linear errors.

4.2 Artificial neural network method

The Artificial neural network (ANN) is a computational 
structure that imitates the human brain neuron systems; it can 
imitate the information processing, memorizing, and learning 
processes of the human brain. The neural network is basically 
nonlinear, can provide a nonlinear output in response to an 
external stimulation, thus can better simulate the nonlinear 
dynamics of batteries [27-31], and can therefore be used for 
SOC estimation. Neural networks used for such SOC estimation 
include the back propagation (BP) neural network model and the 
radial basis function network (RBF). The BP model is one of the 
most widely applied models, based on the most comprehensive 
theories. It can learn during the training process, is more effective 
in modeling the system of complicated dynamic behaviors, and, 
because of its multi-input and nonlinear characteristics, can 
simulate the external characteristics of batteries. A BP neural 
network, shown in Fig. 2, usually adopts a 3-layer structure, 
namely, the input layer, the hidden layer and the output layer. 
The number of neurons in the input layer depends on the actual 
demands; these neurons connect the network with its external 
environment, and send input signals to the hidden layer. In a BP 
neural network with artificial neurons used for SOC estimation, 
as shown in Fig. 2, the input variables are voltage, current, 
temperature, etc., and the output is the SOC of the battery. 
The number of neurons in the hidden layer depends on the 
complexity and analytical accuracy of a case. These neurons 
are responsible for the nonlinear transformation from the input 
space to the hidden space. The output layer realizes the mapping 
from a high-dimensional space to a low-dimensional space. The 
disadvantage of the neural network method is its demand for 
large, comprehensive quantities of data to train the system, and 
its estimation errors result mainly from the selected training data 
and the training method.

Fig. 1. Kalman filter Block diagram for SOC estimation.

Fig. 2. BP neural network with artificial neural network used for SOC 
estimation.
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4.3 Electrochemical impedance dpectroscope method

Electrochemical impedance spectroscopy (EIS) [32-34] is a 
method for studying Li-ion batteries in which small-amplitude sine 
waves (voltage or current) are used as the disturbing signal. The 
battery generates a response that is like a linear relationship, and 
the impedance spectroscope measures it over a very wide frequency 
range. Fig. 3 shows an EIS Test Diagram. The EIS measurement of 
a Li-ion battery system approximates a stable linear system M. A 
sine-wave signal X (voltage or current) with angular frequency ω is 
input into the system, and a sine-wave signal Y (current or voltage) 
with angular frequency ω is output from the system. The frequency 
response function G of the Li-ion battery is then the electrochemical 
impedance, which is also a function of angular frequency ω.
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actual application, the ampere-hour integral method is the one 
most frequently used. 

(2) Of the current SOC estimation methods, all have their 
pros and cons. The ampere-hour integral method, in 
combination with the OCV method, is widely adopted to 
estimate SOC, because it can reduce the accumulated error 
effectively, but fails to deal with the root causes of such 
accumulated error. 

(3) Since the battery's charge and discharge current, terminal 
voltage, temperature, self-discharge, degree of aging, and other 
related factors influence the battery's capacity, such factors 
should be taken into consideration in SOC estimation. The BMS 
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A series of frequency response functions with different angular 
frequencies can be measured, and are therefore the EIS of the Li-
ion battery. Based on the measured EIS spectroscopy, the EIS 
equivalent circuit or mathematical model can be calculated; it 
is found by analysis of EIS when the Li-ion battery is at different 
SOCs. When the internal impedance of the Li-ion battery changes 
from capacitive to inductive, the corresponding disturbing signal 
frequency has a monotonic relationship with its SOC, based on 
which the Li-ion battery’s SOC can be rapidly estimated [35-40]. 
The electrochemical impedance spectroscope, a type of frequency 
domain measurement, is used to study the Li-ion battery system by 
measurement of the impedance over a very wide frequency range, 
and thus can acquire more dynamic and structural information 
than other measurement systems can.

5. SUMMARIES

This paper has summarized and studied the methods used to 
estimate Li-ion battery state of charge, and compares several SOC 
estimation methods, as shown in Table 1.Some conclusions are as 
follows.

(1) There are quite a few SOC estimation methods, but in actual 
application, the ampere-hour integral method is the one most 
frequently used.

(2) Of the current SOC estimation methods, all have their pros 
and cons. The ampere-hour integral method, in combination with 
the OCV method, is widely adopted to estimate SOC, because it can 
reduce the accumulated error effectively, but fails to deal with the 
root causes of such accumulated error.

(3) Since the battery's charge and discharge current, terminal 
voltage, temperature, self-discharge, degree of aging, and other 
related factors influence the battery's capacity, such factors should 
be taken into consideration in SOC estimation. The BMS has rich 
storage of processing data, but the data are not used effectively. 
How to combine these data with data mining, data fusion, and 
other related technologies will be an effective way to estimate SOC 
and other parameters.

(4) Though the new intelligent algorithm is accurate in estimating 
SOC, it needs to be simplified in order to make engineering 
applications easier.

(5) It is still difficult to accurately estimate SOC when a Li-ion  

battery’s current is changing, which could be a topic for further 
research..
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Table 1. Comparison of SOC estimation methods.

SOC estimation method Advantage Disadvantage

Discharge experiment Simple, accurate
Offline testing, time-

consuming

Ampere-hour integral Simple, online testing Have accumulated errors

Open circuit voltage Simple, online testing
Long duration standing 

required

Kalman filter
Online testing, high 

accuracy,  suppresses 
noise interference

Complicated, 
dependent on the 

accuracy of the model

Artificial neural network Online testing
Training with large 

quantity of data

Electrochemical 
impedance 

spectroscopy
Online testing

Subject to external 
conditions
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