DOI QR코드

DOI QR Code

Adaptation of zirconia crowns created by conventional versus optical impression: in vitro study

  • Cetik, Sibel (Department of Stomatology and Dentistry, Erasmus Hospital, Universite Libre de Bruxelles) ;
  • Bahrami, Babak (Laboratory of Physiology and Pharmaceutics, Faculty of Medicine, Universite Libre de Bruxelles) ;
  • Fossoyeux, Ines (Department of Stomatology and Dentistry, Erasmus Hospital, Universite Libre de Bruxelles) ;
  • Atash, Ramin (Department of Stomatology and Dentistry, Erasmus Hospital, Universite Libre de Bruxelles)
  • Received : 2016.10.10
  • Accepted : 2017.04.24
  • Published : 2017.06.30

Abstract

PURPOSE. The aim of this study was to compare the precision of optical impression (Trios, 3Shape) versus that of conventional impression (Imprint IV, 3M-ESPE) with three different margins (shoulder, chamfer, and knife-edge) on Frasaco teeth. MATERIALS AND METHODS. The sample comprised of 60 zirconia half-crowns, divided into six groups according to the type of impression and margin. Scanning electron microscopy enabled us to analyze the gap between the zirconia crowns and the Frasaco teeth, using ImageJ software, based on eight reproducible and standardized measuring points. RESULTS. No statistically significant difference was found between conventional impressions and optical impressions, except for two of the eight points. A statistically significant difference was observed between the three margin types; the chamfer and knife-edge finishing lines appeared to offer better adaptation results than the shoulder margin. CONCLUSION. Zirconia crowns created from optical impression and those created from conventional impression present similar adaptation. While offering identical results, the former have many advantages. In view of our findings, we believe the chamfer margin should be favored.

Keywords

References

  1. Alghazzawi TF. Advancements in CAD/CAM technology: Options for practical implementation. J Prosthodont Res 2016;60:72-84. https://doi.org/10.1016/j.jpor.2016.01.003
  2. Borba M, Miranda WG Jr, Cesar PF, Griggs JA, Bona AD. Evaluation of the adaptation of zirconia-based fixed partial dentures using micro-CT technology. Braz Oral Res 2013;27: 396-402. https://doi.org/10.1590/S1806-83242013000500003
  3. Nedelcu RG, Persson AS. Scanning accuracy and precision in 4 intraoral scanners: an in vitro comparison based on 3-dimensional analysis. J Prosthet Dent 2014;112:1461-71. https://doi.org/10.1016/j.prosdent.2014.05.027
  4. Ahlholm P, Sipila K, Vallittu P, Jakonen M, Kotiranta U. Digital versus conventional impressions in fixed prosthodontics: A review. J Prosthodont 2016 Aug 2.
  5. Mahl D, Glenz F, Marinello CP. Digital implant impression taking - an overview. Swiss Dent J 2014;124:165-86.
  6. Ting-Shu S, Jian S. Intraoral digital impression technique: A review. J Prosthodont 2015;24:313-21. https://doi.org/10.1111/jopr.12218
  7. Gjelvold B, Chrcanovic BR, Korduner EK, Collin-Bagewitz I, Kisch J. Intraoral digital impression technique compared to conventional impression technique. A randomized clinical trial. J Prosthodont 2016;25:282-7. https://doi.org/10.1111/jopr.12410
  8. Abdel-Azim T, Rogers K, Elathamna E, Zandinejad A, Metz M, Morton D. Comparison of the marginal fit of lithium disilicate crowns fabricated with CAD/CAM technology by using conventional impressions and two intraoral digital scanners. J Prosthet Dent 2015;114:554-9. https://doi.org/10.1016/j.prosdent.2015.04.001
  9. Berrendero S, Salido MP, Valverde A, Ferreiroa A, Pradies G. Influence of conventional and digital intraoral impressions on the fit of CAD/CAM-fabricated all-ceramic crowns. Clin Oral Investig 2016;20:2403-10. https://doi.org/10.1007/s00784-016-1714-6
  10. Shembesh M, Ali A, Finkelman M, Weber HP, Zandparsa R. An in vitro comparison of the marginal adaptation accuracy of CAD/CAM restorations using different impression systems. J Prosthodont 2016 Feb 8.
  11. Zarauz C, Valverde A, Martinez-Rus F, Hassan B, Pradies G. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions. Clin Oral Investig 2016;20:799-806. https://doi.org/10.1007/s00784-015-1590-5
  12. Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry IL, Thomas GW, Qian F. Internal fit of pressed and computer-aided design/computer-aided manufacturing ceramic crowns made from digital and conventional impressions. J Prosthet Dent 2015;113:304-9. https://doi.org/10.1016/j.prosdent.2014.09.015
  13. Ender A, Zimmermann M, Attin T, Mehl A. In vivo precision of conventional and digital methods for obtaining quadrant dental impressions. Clin Oral Investig 2016;20:1495-504. https://doi.org/10.1007/s00784-015-1641-y
  14. Ng J, Ruse D, Wyatt C. A comparison of the marginal fit of crowns fabricated with digital and conventional methods. J Prosthet Dent 2014;112:555-60. https://doi.org/10.1016/j.prosdent.2013.12.002
  15. Pradies G, Zarauz C, Valverde A, Ferreiroa A, Martinez-Rus F. Clinical evaluation comparing the fit of all-ceramic crowns obtained from silicone and digital intraoral impressions based on wavefront sampling technology. J Dent 2015;43:201-8. https://doi.org/10.1016/j.jdent.2014.12.007
  16. Ueda K, Beuer F, Stimmelmayr M, Erdelt K, Keul C, Guth JF. Fit of 4-unit FDPs from CoCr and zirconia after conventional and digital impressions. Clin Oral Investig 2016;20:283-9. https://doi.org/10.1007/s00784-015-1513-5
  17. Boitelle P, Mawussi B, Tapie L, Fromentin O. A systematic review of CAD/CAM fit restoration evaluations. J Oral Rehabil 2014;41:853-74. https://doi.org/10.1111/joor.12205
  18. Anadioti E, Aquilino SA, Gratton DG, Holloway JA, Denry I, Thomas GW, Qian F. 3D and 2D marginal fit of pressed and CAD/CAM lithium disilicate crowns made from digital and conventional impressions. J Prosthodont 2014;23:610-7. https://doi.org/10.1111/jopr.12180
  19. Quaas S, Rudolph H, Luthardt RG. Direct mechanical data acquisition of dental impressions for the manufacturing of CAD/CAM restorations. J Dent 2007;35:903-8. https://doi.org/10.1016/j.jdent.2007.08.008
  20. Aboushelib MN. Fatigue and fracture resistance of zirconia crowns prepared with different finish line designs. J Prosthodont 2012;21:22-7. https://doi.org/10.1111/j.1532-849X.2011.00787.x
  21. Jalalian E, Atashkar B, Rostami R. The effect of preparation design on the fracture resistance of zirconia crown copings (Computer Associated Design/Computer Associated Machine, CAD/CAM System). J Dent (Tehran) 2011;8:123-9.
  22. Beuer F, Aggstaller H, Edelhoff D, Gernet W. Effect of preparation design on the fracture resistance of zirconia crown copings. Dent Mater J 2008;27:362-7. https://doi.org/10.4012/dmj.27.362
  23. Chai J, Chong KH. Probability of failure of machined zirconia dental ceramic core materials. Int J Prosthodont 2009;22: 340-1.
  24. Comlekoglu M, Dundar M, Ozcan M, Gungor M, Gokce B, Artunc C. Influence of cervical finish line type on the marginal adaptation of zirconia ceramic crowns. Oper Dent 2009;34:586-92. https://doi.org/10.2341/08-076-L
  25. Aykul H, Toparli M, Dalkiz M. A calculation of stress distribution in metal-porcelain crowns by using three-dimensional finite element method. J Oral Rehabil 2002;29:381-6. https://doi.org/10.1046/j.1365-2842.2002.00826.x
  26. Mitov G, Anastassova-Yoshida Y, Nothdurft FP, von See C, Pospiech P. Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns. J Adv Prosthodont 2016;8:30-6. https://doi.org/10.4047/jap.2016.8.1.30
  27. Komine F, Iwai T, Kobayashi K, Matsumura H. Marginal and internal adaptation of zirconium dioxide ceramic copings and crowns with different finish line designs. Dent Mater J 2007; 26:659-64. https://doi.org/10.4012/dmj.26.659
  28. Re D, Cerutti F, Augusti G, Cerutti A, Augusti D. Comparison of marginal fit of Lava CAD/CAM crown-copings with two finish lines. Int J Esthet Dent 2014;9:426-35.
  29. Euan R, Figueras-Alvarez O, Cabratosa-Termes J, Oliver-Parra R. Marginal adaptation of zirconium dioxide copings: influence of the CAD/CAM system and the finish line design. J Prosthet Dent 2014;112:155-62. https://doi.org/10.1016/j.prosdent.2013.10.012

Cited by

  1. Comparison of the accuracy of digital impressions and traditional impressions: Systematic review vol.56, pp.3, 2018, https://doi.org/10.4047/jkap.2018.56.3.258
  2. Marginal and internal adaptation of single crowns and fixed dental prostheses by using digital and conventional workflows: A systematic review and meta-analysis vol.126, pp.3, 2017, https://doi.org/10.1016/j.prosdent.2020.07.007