DOI QR코드

DOI QR Code

고추장에서 분리된 Bacillus subtilis BS16045의 유전체 서열 분석

Complete genome sequence of Bacillus subtilis BS16045 isolated from Gochujang

  • 전새봄 (전북대학교 자연과학대학 생명과학과) ;
  • 허준 (전북대학교 자연과학대학 생명과학과) ;
  • 엄태붕 (전북대학교 자연과학대학 생명과학과)
  • Jeon, SaeBom (Department of Biological Sciences, Chonbuk National University) ;
  • Heo, Jun (Department of Biological Sciences, Chonbuk National University) ;
  • Uhm, Tai-Boong (Department of Biological Sciences, Chonbuk National University)
  • 투고 : 2016.12.26
  • 심사 : 2016.12.28
  • 발행 : 2017.03.31

초록

한국 발효식품의 보존성을 높이기 위한 스타터 균주를 얻기 위하여 고추장에서 Bacillus subtilis BS16045를 분리하였다. B. subtilis BS16045에 대한 유전체 분석을 실시하였으며, G+C 비율이 43.6%인 4,165,121 bp 크기의 염기서열을 얻었다. 또한 이 유전체로부터 항진균 및 항균 활성에 연관이 있는 surfactin, kanosamine, bacillaene, plipastatin, subtilosin A, bacilysin 생산 유전자들을 확인하였다. 이러한 결과들을 통해 B. subtilis BS16045는 장류 제조시설에서 유해균의 오염문제를 해결할 수 있는 스타터로 이용될 수 있을 것으로 보인다.

Bacillus subtilis BS16045 was isolated from Gochujang, a Korean red chili paste, in order to get a starter strain that can be used for preservation of the fermented foods. We report the whole genome sequence of B. subtilis BS16045, which contains 4,165,121 bp with a G+C content of 43.6%. We also confirmed the set of antibiotic genes producing surfactin, kanosamine, bacillaene, plipastatin, subtilosin A, and bacilysin, which are related to antifungal and antibacterial activities. These results indicate that B. subtilis BS16045 could be a potential starter strain for solving contamination by food-borne pathogens in the soybean products factory.

키워드

참고문헌

  1. Brinsmade, S.R., Alexander, E.L., Livny, J., Stettner, A.I., Segre, D., Rhee, K.Y., and Sonenshein, A.L. 2014. Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY. Proc. Natl. Acad. Sci. USA 111, 8227-8232. https://doi.org/10.1073/pnas.1321308111
  2. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A., and Eddy, S.R. 2003. Rfam: an RNA family database. Nucleic Acids Res. 31, 439-441. https://doi.org/10.1093/nar/gkg006
  3. Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, L.J. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 1.
  4. Jensen, L.J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., and Bork, P. 2008. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, 250-254.
  5. Kamada, M., Hase, S., Fujii, K., Miyake, M., Sato, K., Kimura, K., and Sakakibara, Y. 2015. Whole-genome sequencing and comparative genome analysis of Bacillus subtilis strains isolated from non-salted fermented soybean foods. PLoS One 10, 1.
  6. Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G.O., Azevedo, V., Bertero, M.G., Bessleres, P., Bolotin, A., Borriss, R., et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature 390, 249-256. https://doi.org/10.1038/36786
  7. Lowe, T.M. and Eddy, S.R. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955-964. https://doi.org/10.1093/nar/25.5.0955
  8. Paik, S.H., Chakicherla, A., and Hansen, J.N. 1998. Identification and characterization of the structural and transporter genes for, and the chemical and biological properties of, sublancin 168, a novel lantibiotic produced by Bacillus subtilis 168. J. Biol. Chem. 273, 23134-23142. https://doi.org/10.1074/jbc.273.36.23134
  9. Stein, T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  10. Yeo, I.C., Lee, N.K., and Hahm, Y.T. 2012. Genome sequencing of Bacillus subtilis SC-8, antagonistic to the Bacillus cereus group, isolated from traditional Korean fermented-soybean food. J. Bacteriol. 194, 536-537. https://doi.org/10.1128/JB.06442-11