DOI QR코드

DOI QR Code

인쇄전자 기술 및 장비개발 현황

Methods and Development Status of Equipment for Printed Electronics

  • 신동윤 (부경대학교 인쇄정보공학과)
  • Shin, Dong-Youn (Dept. of Graphic Arts Information Engineering, Pukyong Nat'l Univ.)
  • 투고 : 2016.01.26
  • 심사 : 2016.03.30
  • 발행 : 2017.03.01

초록

액상의 전자재료를 인쇄라는 저비용 패턴방식을 이용하여 전자 혹은 디스플레이 부품 및 제품을 대량 생산하는 것을 인쇄전자라고 하며, 2007 년을 전후하여 국내에서도 본격적으로 저비용 전자 및 디스플레이 부품 및 제품을 제조하기 위한 소재, 공정 및 장비에 대한 연구가 시작되었다. 본 연구에서는 수~수십 마이크로미터급의 해상도를 가지는 전자 혹은 디스플레이 부품 및 제품을 생산할 수 있는 초정밀 인쇄전자 장비들에 대해 소개하도록 한다.

Printed Electronics is a relatively new subject where electronics and display appliances are mass-produced by employing low-cost printing techniques with electronic materials suspended in a liquid medium, and many efforts to develop materials, process and equipment to commercialize low-cost electronics and display parts have been made since 2007 in the Republic of Korea. In this work, the development status of printing equipment for printed electronics and display components in the size of a few micrometers and tens of micrometers is briefly introduced.

키워드

참고문헌

  1. Khandpur, R. S., 2006, "Printed Circuit Boards: Design, Fabrication, Assembly and Testing," New York, McGraw-Hill.
  2. McEvoy, A. J., Markvart, T. and Castaner, L., 2012, "Practical Handbook of Photovoltaics : Fundamentals and Applications," Waltham, MA, Academic Press.
  3. Lee, J.-H., Liu, D. N. and Wu, S.-T., 2008, "Introduction to Flat Panel Displays," John Wiley and Sons.
  4. 김강대, 허영헌, 이명원, 류기성, 송정근, 2007, "플렉시블 디스플레이와 집적회로에의 OTFT 응용," 대한기계학회 춘추학술대회, pp. 1920-1924.
  5. "LG 화학, 컬러필터 신공정 개발," 연합뉴스, 2005.08.31
  6. "삼성, 내년 6 월 LCD 컬러필터 공정에 업계 첫 잉크젯 프린터 적용," 디지털타임스, 2005.11.07.
  7. Yoo, S.-S., 2010, "Development of the Printing Technology for the CF arrays of TFT-LCDs," Printed Electronics & Photovoltaics Europe.
  8. Suh, M. C., Chin, B. D., Kim, M.-H., Kang, T. M. and Lee, S. T., 2003, "Enhanced Luminance of Blue Light- Emitting Polymers by Blending with Hole-Transporting Materials," Adv. Mater., Vol. 15, No. 15, pp. 1254-1258. https://doi.org/10.1002/adma.200304721
  9. "LITI Laser-induced thermal imaging process," OLED-Display.net, 2011.11.19,
  10. "Panasonic's printed 56" 4K OLED TV prototype uses Sumitomo's PLED materials," OLED-Info, 2013.03.19.
  11. Printing Equipment for Printed Electronics 2015-2025: Market opportunities for printing, curing and integration equipment, IDTechEx Research, 2014.
  12. Moonen, P. F. Yakimets, I and Huskens, J., 2012, "Fabrication of Transistors on Flexible Substrates: from Mass- Printing to High-Resolution alternative Lithography Strategies," Adv. Mater., Vol. 24, No. 41, pp. 5526-5541. https://doi.org/10.1002/adma.201202949
  13. Krebs, F. C., Fyenbo, J. and Jorgensen, M., 2010, "Product integration of compact roll-to-roll processed polymer solar cell modules: methods and manufacture using flexographic printing, slot-die coating and rotary screen printing," J. Mater. Chem., Vol. 20, No. 41, pp. 8994-9001. https://doi.org/10.1039/c0jm01178a
  14. Kwan, M. K., Shin, K. H., Yoon, E. Y. and Suh, K. Y., 2010, "Fabrication of conductive metal lines by plate-toroll pattern transfer utilizing edge dewetting and flexographic printing," J. Colloid Interface Sci., Vol. 343, No. 1, pp. 301-305. https://doi.org/10.1016/j.jcis.2009.11.003
  15. Järn, M., Täg, C.-M., Järnström, J., Granqvist, B. and Rosenholm, J. B., 2006, "Alternative models for determining the surface energy components in offset printing," J. Colloid Interface Sci., Vol. 301, No. 2, pp. 668-676. https://doi.org/10.1016/j.jcis.2006.05.018
  16. Shen, W., Mao, M., Murray, G. and Tian, J., 2008, "Adhesion and anti-adhesion of viscous fluids on solid surfaces-A study of ink transfer mechanism in waterless offset printing," J. Colloid Interface Sci., Vol. 318, No. 2, pp. 348-357. https://doi.org/10.1016/j.jcis.2007.10.016
  17. Harrey, P. M., Ramsey, B. J., Evans, P. S. A. and Harrison, D. J., 2002, "Capacitive-type humidity sensors fabricated using the offset lithographic printing process,"Sens. Actuators, B, Vol. 87, No. 2, pp. 226-232. https://doi.org/10.1016/S0925-4005(02)00240-X
  18. Zielke, D., Hübler, A. C., Hahn, U., Brandt, N., Bartzsch, M., Fügmann, U., Fischer, T., Veres, J. and Ogier. S., 2005, "Polymer-based organic field-effect transistor using offset printed source/drain structures," Appl. Phys. Lett., Vol 87, No. 12, 123508. https://doi.org/10.1063/1.2056579
  19. Leppavuori, S., Vaananen, J., Lahti, M., Remes, J. and Uusimaki, A., 1994, "A novel thick-film technique, gravure offset printing, for the realization of fine-line sensor structures," Sens. Actuators, A, Vol. 42, No. 1, pp. 593-596. https://doi.org/10.1016/0924-4247(94)80060-X
  20. Lahti, M., Leppävuori, S. and Lantto, V., 1999, "Gravure-offset-printing technique for the fabrication of solid films," Appl. Surf. Sci., Vol. 142, No. 1, pp. 367-370. https://doi.org/10.1016/S0169-4332(98)00676-X
  21. Pudas, M., Hagberg, J. and Leppävuori, S., 2004, "Printing parameters and ink components affecting ultra-fineline gravure-offset printing for electronics applications," J. Eur. Ceram. Soc., Vol. 24, No. 10, pp. 2943-2950. https://doi.org/10.1016/j.jeurceramsoc.2003.11.011
  22. Lee, T.-M., Lee, S.-H., Noh, J.-H., Kim, D.-S. and Chun, S., 2010, "The effect of shear force on ink transfer in gravure offset printing," J. Micromech. Microeng., Vol. 20, No. 12, 125026. https://doi.org/10.1088/0960-1317/20/12/125026
  23. Lee, C. W., Kim, N. S. and Kim, C. W., 2013, "Statistical Analysis for Thickness and Surface Roughness of Printed Pattern in Roll-to-Roll Printed Electronics System," Trans. Korean Soc. Mech. Eng. A, Vol. 37, No. 3, pp. 286-294.
  24. Ahn, B. J., Han, Y., J. and Ko, S. L., 2010, "Influence of Micro Pattern Geometry and Printing and Curing Conditions in Gravure Printing on Printing Performance When Using Conductive Ink," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 3, pp. 263-271. https://doi.org/10.3795/KSME-A.2010.34.3.263
  25. Sondergaard, R., Hosel, M., Angmo, D., Larsen-Olsen, T. T. and Krebs, F. C., 2012, "Roll-to-roll fabrication of polymer solar cells," Mater. Today, Vol. 15, No. 1, pp. 36-49. https://doi.org/10.1016/S1369-7021(12)70019-6
  26. Shin, D.-Y., Lee, Y. and Kim, C. H., 2009, "Performance characterization of screen printed radio frequency identification antennas with silver nanopaste," Thin Solid Films, Vol. 517, No. 21, pp. 6112-6118. https://doi.org/10.1016/j.tsf.2009.05.019
  27. Yoshida, K., 2006, "Printing Technology for Electronic Devices Manufacturing," Journal of Printing Science and Technology, Vol. 43, No. 1, pp. 2-6.
  28. Kim, M., You, I.-K., Han, H., Jung, S.-W., Kim, T.-Y., Ju, B.-K. and Koo, J. B., 2011, "Organic Thin-Film Transistors with Short Channel Length Fabricated by Reverse Offset Printing," Electrochem. Solid-State Lett., Vol. 14, No. 8, pp. H333-H336. https://doi.org/10.1149/1.3591435
  29. Kim, M., Koo, J. B., Baeg, K.-J., Jung, S.-W., Ju, B.-K. and You, I.-K., 2012, "Top-gate staggered poly (3,3″′- dialkyl-quarterthiophene) organic thin-film transistors with reverse-offset-printed silver source/drain electrodes" Appl. Phys. Lett., Vol. 101, No. 13, 133306. https://doi.org/10.1063/1.4755878
  30. Choi, Y. M., Kim, K. Y., Lee, E., Jo, J. and Lee, T. M., 2015, "Fabrication of a single-layer metal-mesh touchscreen sensor using reverse-offset printing," J. Inf. Disp., Vol. 16, No. 1, pp. 37-41. https://doi.org/10.1080/15980316.2014.991770
  31. Choi, Y.-M., Lee, E.-S., Lee, T.-M. and Kim, K.-Y., 2015, "Optimization of a reverse-offset printing process and its application to a metal mesh touch screen sensor," Microenectron. Eng., Vol. 134, pp. 1-6. https://doi.org/10.1016/j.mee.2014.12.007
  32. Shin, D.-Y., 2011, "Fabrication of Metal Electrodes Based on the Self-Differentiation Technique Using the Novel High-and-Low Strategy," J. Imaging Sci. Technol., Vol. 55, No. 4, 40303-1. https://doi.org/10.2352/J.ImagingSci.Technol.2011.55.4.040303
  33. Pudas, M., Hagberg, J. and Leppavuori, S., 2004, "Gravure offset printing of polymer inks for conductors," Prog. Org. Coat., Vol. 49, No. 4, pp. 324-335. https://doi.org/10.1016/j.porgcoat.2003.09.013
  34. Lee, T.-M., Noh, J.-H., Kim, C. H., Jo, J. and Kim, D.-S., 2010, "Development of a gravure offset printing system for the printing electrodes of flat panel display," Thin Solid Films, Vol. 518, No. 12, pp. 3355-3359. https://doi.org/10.1016/j.tsf.2009.10.017
  35. Lee, T.-M., Noh, J.-H., Kim, I., Kim, D.-S. and Chun, S., 2010, "Reliability of gravure offset printing under various printing conditions," J. Appl. Phys., Vol. 108, No. 10, 102802. https://doi.org/10.1063/1.3510466
  36. Choi, Y.-M., Kim, K.-Y., Jo, J. and Lee, T.-M., 2014, "Effect of PDMS Blanket Deformation on Printability in Reverse-Offset Printing," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 8, pp. 709-714. https://doi.org/10.3795/KSME-B.2014.38.8.709
  37. Shin, D.-Y., Grassia, P. and Derby, B., 2004, "Numerical and experimental comparison of mass transport rate in a piezoelectric drop-on-demand inkjet print head," Int. J. Mech. Sci., Vol. 46, No. 2, pp. 181-199. https://doi.org/10.1016/j.ijmecsci.2004.03.008
  38. Shin, D.-Y., Grassia, P. and Derby, B., 2005, "Oscillatory incompressible fluid flow in a tapered tube with a free surface in an inkjet print head," J. Fluids Eng., Vol. 127, No. 1, pp. 98-109. https://doi.org/10.1115/1.1852474
  39. Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. and Witten, T. A., 1997, "Capillary flow as the cause of ring stains from dried liquid drops," Nature, Vol. 389, No. 6653, pp. 827-829. https://doi.org/10.1038/39827
  40. Sirringhaus, H., Kawase, T., Friend, R. H., Shimoda, T., Inbasekaran, M., Wu, W. and Woo, E. P., 2000, "Highresolution inkjet printing of all-polymer transistor circuits," Science, Vol. 290, No. 5499, pp. 2123-2126. https://doi.org/10.1126/science.290.5499.2123
  41. Wang, J. Z., Zheng, Z. H., Li, H. W., Huck, W. T. S. and Sirringhaus, H., 2004, "Dewetting of conducting polymer inkjet droplets on patterned surfaces," Nat. Mater., Vol. 3, No. 3, pp. 171-176. https://doi.org/10.1038/nmat1073
  42. Park, J. U., Hardy, M., Kang, S. J., Barton, K., Adair, K., Mukhopadhyay, D. K., Lee, C. Y., Strano, M. S., Alleyne, A. G., Geordiadis, J. G., Ferreira, P. M. and Rogers, J. A., 2007, "High-resolution electrohydrodynamic jet printing," Nat. Mater., Vol. 6, No. 10, pp. 782-789. https://doi.org/10.1038/nmat1974
  43. Sekitani, T., Noguchi, Y., Zschieschang, U., Klauk, H. and Someya, T., 2008, "Organic transistors manufactured using inkjet technology with subfemtoliter accuracy," Proc. Natl. Acad. Sci. U.S.A., Vol. 105, No. 13, pp. 4976-4980. https://doi.org/10.1073/pnas.0708340105
  44. Jaworek, A. and Krupa, A., 1999, "Classification of the modes of EHD spraying," J. Aerosol Sci., Vol. 30, No. 7, pp. 873-893. https://doi.org/10.1016/S0021-8502(98)00787-3
  45. Shin, D.-Y., Seo, J. Y., Tak, H. and Byun, D., 2015, "Bimodally dispersed silver paste for the metallization of a crystalline silicon solar cell using electrohydrodynamic jet printing," Sol. Energy Mater. Sol. Cells, Vol. 136, pp. 148-156. https://doi.org/10.1016/j.solmat.2015.01.008
  46. Jeong, J. A., Kim, H. K. and Kim, J., 2014, "Invisible Ag grid embedded with ITO nanoparticle layer as a transparent hybrid electrode," Sol. Energy Mater. Sol. Cells, Vol. 125, pp. 113-119. https://doi.org/10.1016/j.solmat.2014.03.003
  47. Roh, H.-R., Go, J.-K. and Kwon, K.-S., 2013, "Electrohydrydynamic Inkjet Printing System for Ultrafine Patterning," Trans. Korean Soc. Mech. Eng. B, Vol. 37, No. 9, pp. 873-877. https://doi.org/10.3795/KSME-B.2013.37.9.873
  48. Choi, K.-H., Khan, A., Rahman, K., Doh, Y.-H., Kim, D.-S. and Kwan, K.-R., 2011, "Effects of nozzles array configuration on cross-talk in multi-nozzle electrohydrodynamic inkjet printing head," J. Electrost., Vol. 69, No. 4, pp. 380-387. https://doi.org/10.1016/j.elstat.2011.04.017
  49. Ho, C. C., Murata, K., Steingart, D. A., Evans, J. W. and Wright, P. K., 2009, "A super ink jet printed zinc- silver 3D microbattery," J. Micromech. Microeng., Vol. 19, No. 9, 094013. https://doi.org/10.1088/0960-1317/19/9/094013
  50. Gratson, G. M., Xu, M. and Lewis, J. A., 2004, "Microperiodic structures: direct writing of three-dimensional webs," Nature, Vol. 428, No. 6981, pp. 386-386. https://doi.org/10.1038/428386a
  51. Pospischil, M., Fellmeth, T., Brand, A., Nold, S., Kuchler, M., Klawitter, M., Gentischer, H., Konig, M., Horteis, M., Wende, L., Doll, O., Zengerle, R., Clement, F. and Biro, D., 2014, "Optimizing fine line dispensed contact grids," Energy Procedia, Vol. 55, pp. 693-701. https://doi.org/10.1016/j.egypro.2014.08.046
  52. Beutel, M., Lewis, A., Prondzinski, M., Selbmann, F., Richter, P., Bamberg, F., Raschtschepkin, P., Krause, A., Koch, C., Hentsche, M., Stegemann, K.-H., Schneiderlochner, E. and Neuhaus, H., 2014, "Fine line metallization by coextrusion technology for next generation solar cells," Sol. Energy Mater. Sol. Cells, Vol. 131, pp. 64-71. https://doi.org/10.1016/j.solmat.2014.06.006
  53. MacDonald, E., Salas, R., Espalin, D., Perez, M., Aguilera, E., Muse, D. and Wicker, R. B., 2014, "3D printing for the rapid prototyping of structural electronics," IEEE Access, Vol. 2, pp. 234-242. https://doi.org/10.1109/ACCESS.2014.2311810
  54. Mahajan, A., Frisbie, C. D. and Francis, L. F., 2013, "Optimization of aerosol jet printing for high-resolution, high-aspect ratio silver lines," ACS Appl. Mater. Interfaces, Vol. 5, No. 11, pp. 4856-4864. https://doi.org/10.1021/am400606y
  55. Zhao, D., Liu, T., Zhang, M., Liang, R. and Wang, B., 2012, "Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures," Smart Mater. Struct., Vol. 21, No. 11, 115008. https://doi.org/10.1088/0964-1726/21/11/115008
  56. Hosel, M., Sondergaard, R. R., Jorgensen, M. and Krebs, F. C. 2013, "Fast Inline Roll‐to‐Roll Printing for Indium‐Tin‐Oxide‐Free Polymer Solar Cells Using Automatic Registration," Energy Technol., Vol. 1, No. 1, pp. 102-107. https://doi.org/10.1002/ente.201200029
  57. Seo, Y., Yim, S. and Oh, D., 2012, "Alignment Patterns and Position Measurement System for Precision Alignment of Roll-to-Roll Printing," Trans. Korean Soc. Mech. Eng. A, Vol. 36, No. 12, pp. 1563-1568. https://doi.org/10.3795/KSME-A.2012.36.12.1563
  58. Ko, S. H., Pan, H., Grigoropoulos, C. P., Luscombe, C. K., Frechet, J. M. and Poulikakos, D., 2007, "Air stable high resolution organic transistors by selective laser sintering of ink-jet printed metal nanoparticles," Appl. Phys. Lett., Vol. 90, No. 14, 141103. https://doi.org/10.1063/1.2719162
  59. Reinhold, I., Hendriks, C. E., Eckardt, R., Kranenburg, J. M., Perelaer, J., Baumann, R. R. and Schubert, U. S., 2009, "Argon plasma sintering of inkjet printed silver tracks on polymer substrates," J. Mater. Chem., Vol. 19, No. 21, pp. 3384-3388. https://doi.org/10.1039/b823329b
  60. Kim, K. S., Bang, J. O., Choa, Y. H. and Jung, S. B., 2013, "The characteristics of Cu nanopaste sintered by atmospheric-pressure plasma," Microelectron. Eng., Vol. 107, pp. 121-124. https://doi.org/10.1016/j.mee.2012.08.019
  61. Perelaer, J., Klokkenburg, M., Hendriks, C. E. and Schubert, U. S., 2009, "Microwave flash sintering of inkjetprinted silver tracks on polymer substrates," Adv. Mater., Vol. 11, No. 47, 4830.
  62. Perelaer, J., Abbel, R., Wünscher, S., Jani, R., van Lammeren, T. and Schubert, U. S., 2012, "Roll‐to‐roll compatible sintering of inkjet printed features by photonic and microwave exposure: from non‐conductive ink to 40% bulk silver conductivity in less than 15 seconds," Adv. Mater., Vol. 24, No. 19, pp. 2620-2625. https://doi.org/10.1002/adma.201104417
  63. Kim, H. S., Dhage, S. R., Shim, D. E. and Hahn, H. T., 2009, "Intense pulsed light sintering of copper nanoink for printed electronics," Appl. Phys. A, Vol. 97, No. 4, pp. 791-798. https://doi.org/10.1007/s00339-009-5360-6
  64. Hwang, H. J., Chung, W. H. and Kim, H. S., 2012, "In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics," Nanotechnology, Vol. 23, No. 48, 485205. https://doi.org/10.1088/0957-4484/23/48/485205
  65. Niittynen, J., Sowade, E., Kang, H., Baumann, R. R. and Mantysalo, M., 2015, "Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers," Sci. Rep., 5.
  66. "정부 6 대 미래산업 선도기술 선정," 연합뉴스, 2011.03.21.