DOI QR코드

DOI QR Code

Probabilistic modeling of geopolymer concrete using response surface methodology

  • Received : 2016.12.08
  • Accepted : 2017.03.09
  • Published : 2017.06.25

Abstract

Geopolymer Concrete is typically proportioned with activator solution leading to moderately high material cost. Such cost can be enduring in high value added applications especially when cost savings can be recognized in terms of reduction in size of the members. Proper material selection and mix proportioning can diminish the material cost. In the present investigation, a total of 27 mixes were arrived considering the mix parameters as liquid-binder ratio, slag content and sodium hydroxide concentration to study the mechanical properties of geopolymer concrete (GPC) mixes such as compressive strength, split tensile strength and flexural strength. The derived statistical Response Surface Methodology is beleaguered to develop cost effective GPC mixes. The estimated responses are not likely to contrast in linear mode with selected variables; a plan was selected to enable the model of any response in a quadratic manner. The results reveals that a fair correlation between the experimental and the predicted strengths.

Keywords

References

  1. Alonso, S. and Palomo, A. (2001), "Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solid ratio", Mater. Lett., 47(1), 55-62. https://doi.org/10.1016/S0167-577X(00)00212-3
  2. Barker, D.J., Turner, S.A., Napier-Moore, P.A., Clark, M. and Davison, J.E. (2009), "$CO_2$ capture in the cement industry", Energy Proc., 1, 87-94. https://doi.org/10.1016/j.egypro.2009.01.014
  3. Bondar, D., Lynsdale, C.J., Milestone, N.B., Hassani, N. and Ramezanianpour, A.A. (2011), "Engineering properties of alkali-activated natural Pozzolan concrete", ACI Mater. J., 108(1), 64-72.
  4. Chang, J.J. (2003), "A study on the setting characteristics of sodium silicate-activated slag pastes", Cement Concrete Res., 33(7), 1005-1011. https://doi.org/10.1016/S0008-8846(02)01096-7
  5. David, W.L. and Andi, A.A. (2012), "Durability assessment of alkali activated slag (AAS) concrete", Mater. Struct., 45(9), 1425-1437. https://doi.org/10.1617/s11527-012-9842-1
  6. Davidovits, J. (1994), "High-alkali cements for 21st century concretes in concrete technology, past, present and future", Proceedings of the V. Mohan Malhotra Symposium, ACI SP-144, 383-397.
  7. Deja, J., Uliasz-Bochenczyk, A. and Mokrzycki, E. (2010), "$CO_2$ emissions from Polish cement industry", J. Green House Gas Contr., 4(4), 583-588. https://doi.org/10.1016/j.ijggc.2010.02.002
  8. Fatih, B. and Basak, A.B. (2014), "Analyzing mix parameters in ASR concrete using response surface methodology", Constr. Build. Mater., 66, 299-305. https://doi.org/10.1016/j.conbuildmat.2014.05.055
  9. Gunaraj, V. and Murugan, N. (1999), "Application of response surface methodologies for predicting weld base quality in submerged arc welding of pipes", J. Mater. Proc. Technol., 88(1), 266-275. https://doi.org/10.1016/S0924-0136(98)00405-1
  10. Hardjito, D., Cheak, C.C, and Lee, I.C.H. (2008), "Strength and setting times of low calcium fly ash-based geopolymer mortar", Mod. Appl. Sci., 2(4), 3-11.
  11. Homwuttiwong, S., Jaturapitakkul, C. and Chindaprasirt, P. (2012), "Permeability and abrasion resistance of concretes containing high volume fly ash and palm oil fuel ash", Comput. Concrete, 10(4), 349-360. https://doi.org/10.12989/cac.2012.10.4.349
  12. Kandasamy, S. and Akila, P. (2015), "Experimental analysis and modeling of steel fiber reinforced SCC using central composite design", Comput. Concrete, 15(2), 215-229. https://doi.org/10.12989/cac.2015.15.2.215
  13. Kar, A., Ray, I., Unnikrishnan, A. and Halabe, U.B. (2016), "Prediction models for compressive strength of concrete with alkali-activated binders", Comput. Concrete, 17(4), 523-539. https://doi.org/10.12989/cac.2016.17.4.523
  14. Khale, D. and Chaudhary, R. (2007), "Mechanism of geopolymerization and factors influencing its development: A review", J. Mater. Sci., 42(3), 729-746. https://doi.org/10.1007/s10853-006-0401-4
  15. Khan, A., Do, J. and Kim, D. (2016), "Cost effective optimal mix proportioning of high strength self compacting concrete using response surface methodology", Comput. Concrete, 17(5), 629-648. https://doi.org/10.12989/cac.2016.17.5.629
  16. Kumar, S., Kumar, R. and Mehrotra, S. (2010), "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., 45(3), 607-615. https://doi.org/10.1007/s10853-009-3934-5
  17. Lee, W.K. and Van Deventer, J.S.J. (2002), "The effects of inorganic salt contamination on the strength and durability of geopolymer", Coll. Surf. A, 211(2), 115-126. https://doi.org/10.1016/S0927-7757(02)00239-X
  18. Parthiban, K. and Saravana Raja Mohan, K. (2014), "Effect of sodium hydroxide concentration and alkaline ratio on the compressive strength of slag based geopolymer concrete", J. ChemTech Res., 6, 2446-2450.
  19. Ridtirud, C., Chindaprasirt, P. and Pimraksa, K. (2011), "Factors affecting the shrinkage of fly ash geopolymers", J. Miner. Metall. Mater., 18(1), 100-104. https://doi.org/10.1007/s12613-011-0407-z
  20. Rodriguez, E., Bernal, S., Mejia De Gutierrez, R. and Puertas, F. (2008), "Alternative concrete based on alkali-activated slag", Mater. Constr., 58(291), 53-67.
  21. Rowles, M. and O'Connor, B. (2003), "Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesized by sodium silicate activation of metakaolinite", J. Mater. Chem., 13(5), 1161-1165. https://doi.org/10.1039/b212629j
  22. Ruiz-Santaquiteria, C., Skibsted, J., Fernandez-Jimenez, A. and Palomo, A. (2012), "Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates", Cement Concrete Res., 42(9), 1242-1251. https://doi.org/10.1016/j.cemconres.2012.05.019
  23. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P. and Chindaprasirt, P. (2011), "Sodium hydroxide activated ground fly ash geopolymer cured at ambient temperature", Fuel, 90(6), 2118-2124. https://doi.org/10.1016/j.fuel.2011.01.018
  24. Sugumaran, K.R., Sindhu, R.V., Sukanya, S., Aiswarya, N. and Ponnusami, V. (2013), "Statistical studies on high molecular weight pullulan production in solid state fermentation using jack-fruit seed", Carbohydr. Polym., 98(1), 854-860. https://doi.org/10.1016/j.carbpol.2013.06.071
  25. Sukmak, P., Horpibulsuk, S. and Shen, S.L. (2013), "Strength development in clay-fly ash geopolymer", Constr. Build. Mater., 40, 566-574. https://doi.org/10.1016/j.conbuildmat.2012.11.015
  26. Van Deventer, J.S.J., Provis, J.L., Duxson, P. and Lukey, G.C. (2007), "Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products", J. Hazard. Mater., 139(3), 506-513. https://doi.org/10.1016/j.jhazmat.2006.02.044
  27. Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lukey, G.C. (2002), "The effect of composition and temperature on the properties of fly ash-and kaolinite-based geopolymers", Chem. Eng. J., 89(1), 63-73. https://doi.org/10.1016/S1385-8947(02)00025-6
  28. Xu, H. and Van Deventer, J.S.J. (2002), "Geopolymerization of multiple minerals", Miner. Eng., 15(12), 1131-1139. https://doi.org/10.1016/S0892-6875(02)00255-8
  29. Yeh, I.C. (2008), "Prediction of workability of concrete using design of experiments for mixture", Comput. Concrete, 5(1), 1-20. https://doi.org/10.12989/cac.2008.5.1.001
  30. Yusuf, M.O., Johari, M.A.M., Ahmad, Z.A.A. and Maslehuddin, M. (2014), "Evolution of alkaline activated ground blast furnace slag-ultrafine palm oil fuel ash based concrete", Mater. Des., 55, 387-393. https://doi.org/10.1016/j.matdes.2013.09.047