DOI QR코드

DOI QR Code

Comparison of the covariance matrix for general linear model

일반 선형 모형에 대한 공분산 행렬의 비교

  • Nam, Sang Ah (Department of Statistics, Sungkyunkwan University) ;
  • Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
  • Received : 2016.10.18
  • Accepted : 2016.12.29
  • Published : 2017.02.28

Abstract

In longitudinal data analysis, the serial correlation of repeated outcomes must be taken into account using covariance matrix. Modeling of the covariance matrix is important to estimate the effect of covariates properly. However, It is challenging because there are many parameters in the matrix and the estimated covariance matrix should be positive definite. To overcome the restrictions, several Cholesky decomposition approaches for the covariance matrix were proposed: modified autoregressive (AR), moving average (MA), ARMA Cholesky decompositions. In this paper we review them and compare the performance of the approaches using simulation studies.

경시적 자료분석에서 공변량 효과를 추정할 때 반복 측정된 결과들의 상관성은 고려되어야 한다. 따라서 공분산 행렬을 모형화하는 것은 매우 중요하다. 그러나 공분산 행렬의 추정은 모수들의 수가 많고 추정된 공분산행렬이 양정치성을 만족해야 하므로 쉽지 않은 문제이다. 이러한 제한을 극복하기 위해, 공분산행렬의 모형화를 위한 여러가지 방법을 제안하였다: 자기회귀/이동평균/자기회귀-이동평균 구조를 각각 적용한 수정 콜레스키분해 (Pourahmadi, 1999), 이동평균 콜레스키분해 (Zhang과 Leng, 2012)와 자기회귀-이동평균 콜레스키 분해 (Lee 등, 2017) 이들 구조를 가지는 공분산 행렬의 특징을 비교연구하고자 한다. 이 세 가지 모형의 성능을 비교하기 위한 모의실험을 실시한다.

Keywords

References

  1. Daniels, J. M. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
  2. Daniels, J. M. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. https://doi.org/10.1002/sim.1470
  3. Diggle, P. J., Heagerty, P., Liang, K. Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data (2nd Ed), Oxford University Press, Oxford.
  4. Kim, J. and Lee, K. (2015). Survey of models for random effects covariance matrix in generalized linear mixed model, The Korean Journal of Applied Statistics, 28, 211-219. https://doi.org/10.5351/KJAS.2015.28.2.211
  5. Kim, J., Sohn, I., and Lee, K. (2016). Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models, Communications for Statistical Applications and Methods, 24, 81-96.
  6. Lee, K. (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communications for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
  7. Lee, K., Baek, C., and Daniels, M. J. (2017). ARMA Cholesky factor models for the covariance matrix of linear models, Computational Statistics & Data Analysis, working paper.
  8. Lee, K. and Sung, S. A. (2014). Autoregressive Cholesky factor modeling for marginalized random effects models, Communications for Statistical Applications and Methods, 21, 169-181. https://doi.org/10.5351/CSAM.2014.21.2.169
  9. Lee, K. and Yoo, J. (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics & Data Analysis, 80, 111-116. https://doi.org/10.1016/j.csda.2014.06.016
  10. Lee, K., Yoo, J. K., Lee, J., and Hagan, J. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
  11. Pan, J. X. and Mackenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
  12. Pan, J. X. and MacKenzie, G. (2006). Regression models for covariance structures in longitudinal studies. Statistical Modelling, 6, 43-57. https://doi.org/10.1191/1471082X06st105oa
  13. Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
  14. Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
  15. Zhang, W. and Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data, Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068

Cited by

  1. Negative binomial loglinear mixed models with general random effects covariance matrix vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.061