References
- Daniels, J. M. and Pourahmadi, M. (2002). Bayesian analysis of covariance matrices and dynamic models for longitudinal data, Biometrika, 89, 553-566. https://doi.org/10.1093/biomet/89.3.553
- Daniels, J. M. and Zhao, Y. D. (2003). Modelling the random effects covariance matrix in longitudinal data, Statistics in Medicine, 22, 1631-1647. https://doi.org/10.1002/sim.1470
- Diggle, P. J., Heagerty, P., Liang, K. Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data (2nd Ed), Oxford University Press, Oxford.
- Kim, J. and Lee, K. (2015). Survey of models for random effects covariance matrix in generalized linear mixed model, The Korean Journal of Applied Statistics, 28, 211-219. https://doi.org/10.5351/KJAS.2015.28.2.211
- Kim, J., Sohn, I., and Lee, K. (2016). Bayesian modeling of random effects precision/covariance matrix in cumulative logit random effects models, Communications for Statistical Applications and Methods, 24, 81-96.
- Lee, K. (2013). Bayesian modeling of random effects covariance matrix for generalized linear mixed models, Communications for Statistical Applications and Methods, 20, 235-240. https://doi.org/10.5351/CSAM.2013.20.3.235
- Lee, K., Baek, C., and Daniels, M. J. (2017). ARMA Cholesky factor models for the covariance matrix of linear models, Computational Statistics & Data Analysis, working paper.
- Lee, K. and Sung, S. A. (2014). Autoregressive Cholesky factor modeling for marginalized random effects models, Communications for Statistical Applications and Methods, 21, 169-181. https://doi.org/10.5351/CSAM.2014.21.2.169
- Lee, K. and Yoo, J. (2014). Bayesian Cholesky factor models in random effects covariance matrix for generalized linear mixed models, Computational Statistics & Data Analysis, 80, 111-116. https://doi.org/10.1016/j.csda.2014.06.016
- Lee, K., Yoo, J. K., Lee, J., and Hagan, J. (2012). Modeling the random effects covariance matrix for the generalized linear mixed models, Computational Statistics & Data Analysis, 56, 1545-1551. https://doi.org/10.1016/j.csda.2011.09.011
- Pan, J. X. and Mackenzie, G. (2003). Model selection for joint mean-covariance structures in longitudinal studies. Biometrika, 90, 239-244. https://doi.org/10.1093/biomet/90.1.239
- Pan, J. X. and MacKenzie, G. (2006). Regression models for covariance structures in longitudinal studies. Statistical Modelling, 6, 43-57. https://doi.org/10.1191/1471082X06st105oa
- Pourahmadi, M. (1999). Joint mean-covariance models with applications to longitudinal data: unconstrained parameterisation, Biometrika, 86, 677-690. https://doi.org/10.1093/biomet/86.3.677
- Pourahmadi, M. (2000). Maximum likelihood estimation of generalized linear models for multivariate normal covariance matrix, Biometrika, 87, 425-435. https://doi.org/10.1093/biomet/87.2.425
- Zhang, W. and Leng, C. (2012). A moving average Cholesky factor model in covariance modeling for longitudinal data, Biometrika, 99, 141-150. https://doi.org/10.1093/biomet/asr068
Cited by
- Negative binomial loglinear mixed models with general random effects covariance matrix vol.25, pp.1, 2018, https://doi.org/10.29220/CSAM.2018.25.1.061