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Abstract
An influence measure known as Cook’s distance has been used for judging the influence of each observation

on the least squares estimate of the parameter vector. The distance does not reflect the distributional property
of the change in the least squares estimator of the regression coefficients due to case deletions: the distribution
has a covariance matrix of rank one and thus it has a support set determined by a line in the multidimensional
Euclidean space. As a result, the use of Cook’s distance may fail to correctly provide information about influential
observations, and we study some reasons for the failure. Three illustrative examples will be provided, in which
the use of Cook’s distance fails to give the right information about influential observations or it provides the right
information about the most influential observation. We will seek some reasons for the wrong or right provision
of information.
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1. Introduction

In a regression context, there are many measures of the influence of observations on the least squares
estimate of the parameter vector. Some of them can be found in Chatterjee and Hadi (1988) and
Cook and Weisberg (1982). Since the change in the least squares estimate of regression coefficients
due to case deletions is a vector quantity, it is usually normalized or scaled so that observations can
be ordered in a certain way. In this vein Cook (1977) introduced an influence measure based on
confidence ellipsoids.

The distribution of the change in the least squares estimator of the regression coefficients due to
case deletions has a support set determined by a line in the multidimensional Euclidean space. Cook’s
distance does not reflect this kind of distributional property, and thus it can reduce or enlarge the
influence of an observation on the least squares estimate. As a result, the use of Cook’s distance is
likely to underestimate the influence of an observation on the least squares estimate or overestimate it,
which will be studied in Section 2. Hence the use of Cook’s distance may lead to a wrong detection of
influential observations. In Section 3 we consider three illustrative examples. For two examples, the
use of Cook’s distance fails to give the right information about influential observations, and for one
example, it provides the right information about the most influential observation. We will seek some
reasons for the wrong or right provision of information.
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2. On Cook’s distance

A linear regression model of our interest can be expressed as

y = Xβ + ε,

where y is an n×1 vector of values of the response variable, X = (x1, . . . , xn)T is an n× p matrix of full
column rank consisting of n measurements on the p fixed explanatory variables possibly including the
intercept term, β = (β0, β1, . . . , βp−1)T is a p× 1 vector of unknown regression coefficients, and ε is an
n × 1 vector of independent random errors, each of which has zero mean and unknown variance σ2.
We write the least squares estimator of β as β̂ = (XT X)−1XT y which is an unbiased estimator of β and
whose covariance matrix is given by cov(β̂) = σ2(XT X)−1. The n×n matrix H = (hi j) = X(XT X)−1XT

is the hat matrix, and e = (e1, . . . , en)T = (I − H)y is the residual vector. The mean of the residual
vector e is zero and its covariance matrix is cov(e) = σ2(I −H). An unbiased estimator of σ2 is given
by σ̂2 = eT e/(n − p). More details can be found in Seber (1977).

The least squares estimator of β computed without the observation r is written as β̂(r). Miller
(1974) showed that

β̂ − β̂(r) =
(
XT X

)−1
xr

er

1 − hrr
, r = 1, . . . , n.

The mean vector of β̂ − β̂(r) is zero and its covariance matrix is

cov
(
β̂ − β̂(r)

)
=

σ2

1 − hrr

(
XT X

)−1
xr xT

r

(
XT X

)−1
.

The rank of cov(β̂ − β̂(r)) is one for nonnull xr. The only nonzero eigenvalue of cov(β̂ − β̂(r)) is
σ2xT

r (XT X)−2xr/(1 − hrr) and its associated eigenvector is (XT X)−1xr. When we denote by Vr a one-
dimensional subspace generated by (XT X)−1xr of the p-dimensional Euclidean space, the subspace
Vr is just a line along which the eigenvector (XT X)−1xr lies, and each β̂ − β̂(r) has a distribution with
which a random variable takes on values in the set Vr with probability one. More details about the
distribution of β̂ − β̂(r) can be found in Kim (2015).

In order to investigate the change in the value of β̂ due to a deletion of the observation r, Cook
(1977) introduced an influence measure based on confidence ellipsoids as follows:

Dr =
1

pσ̂2

(
β̂ − β̂(r)

)T (
XT X

) (
β̂ − β̂(r)

)
.

Let XT X = GLGT be the spectral decomposition of XT X, where L = diag(l1, . . . , lp) is a p×p diagonal
matrix consisting of the eigenvalues of XT X, G = (g1, . . . , gp) is a p × p orthogonal matrix, and gi is
the eigenvector of XT X associated with the eigenvalue li. Then XT X =

∑p
i=1 ligigT

i . Hence Dr can be
expressed as

Dr =
1

pσ̂2

p∑
i=1

li
[(
β̂ − β̂(r)

)T
gi

]2

=

∣∣∣∣∣∣β̂ − β̂(r)
∣∣∣∣∣∣2

pσ̂2

p∑
i=1

li cos2 θri, (2.1)
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Table 1: The eigenvalues of XT X

l1 l2 l3 l4 l5
44676.2060 5965.4221 809.9521 105.4187 0.0012

where θri is the angle between β̂ − β̂(r) and gi, and ||β̂ − β̂(r)|| is the Euclidean norm of β̂ − β̂(r).
The set {g1, . . . , gp} forms an orthonormal basis for the p-dimensional Euclidean space. The co-

ordinate of β̂ − β̂(r) with respect to the ith eigenvector gi is (β̂ − β̂(r))T gi. In the light of equation (2.1)
the terms li and (β̂ − β̂(r))T gi for each r play a specific role in determining the magnitude of Dr. The
adoption of XT X for scaling the Euclidean norm of β̂− β̂(r) is not reasonable as explained in what fol-
lows. In real data analyses, the line Vr is not in general parallel to any of the eigenvectors g1, . . . , gp.
Also, even in the case where the line Vr is almost parallel to one of the gi’s, it is nearly orthogonal to
the other eigenvectors: for example, if the line Vr is almost parallel to gp, then the component of Dr

associated with the eigenvector gp, lp[(β̂ − β̂(r))T gp]2/pσ̂2 nearly makes a real contribution to the in-
fluence of observation r on β̂, while the component of Dr associated with the remaining eigenvectors,∑p−1

i=1 li[(β̂ − β̂(r))T gi]2/pσ̂2 is likely to distort the influence of observation r on β̂. Most or all of the
terms (β̂− β̂(r))T gi for each observation are computed in the outside of the set Vr over which β̂− β̂(r) is
distributed. As a result, the terms (β̂− β̂(r))T gi play a role of having the value of Dr reduced or enlarged
depending on the values of li as compared with the real influence of the observation r, which results
in distorting the influence of the observation r. Hence the use of Dr is likely to underestimate the in-
fluence of the observation r on β̂ or overestimate it, and the information about influential observations
that the Cook’s distance provides may not be reliable.

3. Three illustrative examples

We will apply the expressions of Dr in equation (2.1) to three data sets: the Hald data set (Draper
and Smith, 1981) and the rat data set (Cook and Weisberg, 1982) which were analyzed also by Cook
(1977), and the body fat data set (Neter et al., 1996, p. 261). Using the probabilistic behavior of β̂− β̂(r)
through the spectral decomposition of its covariance matrix cov(β̂ − β̂(r)), Kim (2015) introduced an
influence measure Mr = xT

r (XT X)−2xr/(1 − hrr) to investigate the influence of deleting an observation
on the least squares estimate β̂, and the problem of deleting multiple cases was considered by Kim
(2016). For these three data sets, the result based on the Dr values will be compared with that based
on the Mr values.

3.1. Hald data

The regression model with the intercept term β0 is fitted to the Hald data set which consists of 13
observations on a single dependent variable and four independent variables. The estimated regression
coefficients are β̂0 = 62.41, β̂1 = 1.55, β̂2 = 0.51, β̂3 = 0.10, and β̂4 = −0.14.

For the values of Dr, observation 8 has the largest value D8 = 0.394 and observation 3 has the
second largest value D3 = 0.301. Based on the Dr values, observation 8 is thus identified as the most
influential observation. However, the influence measure Mr shows that observation 3 has the largest
influence on the least squares estimate of β (M3 = 879.74) but observation 8 is not significantly
influential (M8 = 37.16). In order to seek some reasons for which the two results are contradictory to
each other, we will investigate sources of the Dr values for observations 3 and 8. The eigenvalues of
XT X and their associated eigenvectors are included in Tables 1 and 2, respectively.

(a) Each row in Table 3 shows a normalized vector of each β̂ − β̂(r). The values of cos θri shown in
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Table 2: The eigenvectors of XT X

g1 g2 g3 g4 g5
−0.01699 0.00372 0.00004 −0.01104 0.99979
−0.12789 −0.04278 −0.64590 −0.75134 −0.01028
−0.83968 −0.50922 −0.01812 0.18763 −0.01030
−0.19842 0.07211 0.75572 −0.61985 −0.01052
−0.48881 0.85653 −0.10665 0.12626 −0.01010

Table 3: Normalized vectors of β̂ − β̂(r)

Number
1 −0.99982 0.00772 0.01084 0.00706 0.01158
2 0.99976 −0.01306 −0.01003 −0.01155 −0.00904
3 −0.99979 0.01002 0.01021 0.01065 0.01013
4 −0.99981 0.00799 0.01083 0.01008 0.00964
5 −0.99984 0.00158 0.01304 0.00142 0.01216
6 0.99982 −0.00691 −0.01005 −0.01004 −0.01052
7 0.99981 −0.00095 −0.01376 −0.01099 −0.00820
8 0.99969 −0.01306 −0.00889 −0.01656 −0.00986
9 0.99979 −0.01122 −0.01009 −0.00975 −0.01024
10 −0.99952 0.02344 0.00807 0.01604 0.00885
11 −0.99972 0.01230 0.00941 0.01523 0.00958
12 −0.99979 0.01058 0.01074 0.01015 0.00981
13 0.99981 −0.00893 −0.01118 −0.00874 −0.01007

Table 4: The values of cos θri

r i
1 2 3 4 5

1 −0.00016 0.00085 −0.00112 0.00436 −0.99999
2 −0.00019 0.00081 0.00090 0.00291 1.00000
3 0.00007 0.00010 0.00027 0.00010 −1.00000
4 0.00017 −0.00060 0.00119 0.00204 −1.00000
5 −0.00038 0.00009 −0.00152 0.01296 −0.99991
6 −0.00053 −0.00059 −0.00178 −0.00284 0.99999
7 0.00087 0.00295 −0.00653 −0.00713 0.99995
8 0.00025 −0.00084 −0.00282 0.00612 0.99998
9 −0.00014 −0.00013 0.00120 0.00024 1.00000
10 −0.00030 −0.00009 −0.00415 −0.01389 −0.99989
11 −0.00019 0.00027 0.00234 −0.00467 −0.99999
12 −0.00019 −0.00051 −0.00045 0.00006 −1.00000
13 0.00020 0.00054 0.00048 −0.00228 1.00000

Table 5: The ratios cos2 θ8i/ cos2 θ3i

i
1 2 3 4

12.8 73.6 109.5 3,955

Table 4 can be considered as a measure of closeness of β̂ − β̂(r) to the ith eigenvector gi of XT X.
As β̂ − β̂(r) gets close to gi, the value of cos θri approaches to one. We note from Tables 2 and 3
that both vectors β̂ − β̂(3) and β̂ − β̂(8) are almost parallel to the last eigenvector g5 of XT X, which
can be confirmed by the cos θri values shown in the last column of Table 4. The second to fifth
columns of Table 4 show that both vectors β̂ − β̂(3) and β̂ − β̂(8) are almost orthogonal to each of
the eigenvectors g1, . . . , g4 of XT X.

(b) For observations 3 and 8, the ratios cos2 θ8i/ cos2 θ3i listed in Table 5 are much larger than one
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Table 6: Two components of Cook’s distance for observations 3 and 8

r Dr
∑4

i=1 li
[(
β̂ − β̂(r)

)T
gi

]2
/pσ̂2 l5

[(
β̂ − β̂(r)

)T
g5

]2
/pσ̂2

3 0.301 0.065 0.236
8 0.394 0.368 0.026

Table 7: The change in β̂k due to deletion of each of observations 3 and 8

r β̂0 − β̂0(r) β̂1 − β̂1(r) β̂2 − β̂2(r) β̂3 − β̂3(r) β̂4 − β̂4(r)

3 −76.18 0.76 0.78 0.81 0.77
8 25.16 −0.33 −0.22 −0.42 −0.25

for all i = 1, 2, 3, 4, and hence they show that observation 8 is located closer to all of four axes
g1, . . . , g4 than observation 3.

(c) Since the line V3 over which β̂ − β̂(3) is distributed is almost parallel to the eigenvector g5 of XT X,
the component of D3 associated with the eigenvector g5 which is l5[(β̂ − β̂(3))T g5]2/pσ̂2 nearly
makes a real contribution to the influence of observation 3 on β̂. These components of Dr (r = 3, 8)
are included in Table 6. Also, the proportion of l5[(β̂ − β̂(r))T g5]2/pσ̂2 to Dr is about 79% for
observation 3 and about 7% for observation 8. On the other hand, the line V3 is almost orthogonal
to all of the eigenvectors g1, . . . , g4 of XT X, and therefore the component of D3 associated with
the eigenvectors g1, . . . , g4 which is

∑4
i=1 li[(β̂ − β̂(3))T gi]2/pσ̂2 is likely to distort the influence of

observation 3 on β̂. Observation 8 can be interpreted similarly to observation 3. The difference
of

∑4
i=1 li[(β̂ − β̂(r))T gi]2/pσ̂2 between observations 3 and 8 is approximately −0.303, while the

difference of l5[(β̂ − β̂(r))T g5]2/pσ̂2 between observations 3 and 8 is approximately 0.210. The
extent that the distance D8 distorts the influence of observation 8 on β̂ is far more severe than that
of D3. Thus the component

∑4
i=1 li[(β̂− β̂(r))T gi]2/pσ̂2 plays a role of making the value of D8 large,

while it plays a role of making the value of D3 relatively small. Hence the distance D8 enlarges
the influence of observation 8 on β̂, while the distance D3 reduces the influence of observation 3.

This is a reason for which the use of the Dr values identifies observation 8 that is not significantly
influential as the most influential one and it cannot detect observation 3 as the most influential one.

Even though the Dr value was introduced as an overall measure of the combined influence of
observation r on all of the estimated regression coefficients, it would be desirable if the use of the
Dr values reveals influential observations for each regression coefficient, but the use of the Dr values
does not. The use of the Dr values asserts that deletion of observation 8 has the largest change in
β̂. However, deletion of observation 8 does not bring about a significant change in either estimated
regression coefficient, while deletion of observation 3 has the largest change in all of the estimated
regression coefficients, as can be seen in what follows. Numerical computations of the values β̂k −
β̂k(r), k = 0, 1, . . . , 4; r = 1, . . . , 13 show that deletion of observation 3 has the largest change in β̂k for
all k = 0, 1, . . . , 4. Table 7 shows the change in β̂k due to deletion of each of observations 3 and 8. After
removal of observation 8 from the sample, numerical computations based on the remaining sample
of size 12 show that deletion of observation 3 still has the largest change in β̂k for all k = 0, 1, . . . , 4
as listed in Table 8. After removal of observation 3 from the sample, numerical computations based
on the remaining sample of size 12 show that deletion of observation 4 has the largest change −75.77
in β̂0, deletion of observation 11 has the largest change 0.77 in β̂1, deletion of observation 4 has the
largest change 0.79 in β̂2, deletion of observation 11 has the largest change 0.90 in β̂3, and deletion of
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Table 8: The change in β̂k due to deletion of observations 3 after removal of observation 8 from the sample

β̂0 − β̂0(r) β̂1 − β̂1(r) β̂2 − β̂2(r) β̂3 − β̂3(r) β̂4 − β̂4(r)

−49.17 0.50 0.50 0.54 0.50

observation 4 has the largest change 0.75 in β̂4. We note that the Mr values provide useful information
about influential observations for each regression coefficient.

3.2. Body fat data

We fit the regression model with the intercept term β0 to the the body fat data set which has 20
measurements on a single dependent variable and three independent variables. The least squares
estimates of the regression coefficients are β̂0 = 117.08, β̂1 = 4.33, β̂2 = −2.86, and β̂3 = −2.19.

Observation 3 has the largest value D3 = 0.299 and observation 1 has the second largest distance
D1 = 0.279. The Dr values assert that observation 3 is the most influential observation. However,
for the Mr values, observation 1 has the largest value M1 = 401.19 and observation 3 has M3 =

150.22, not the second largest value. We have contradictory results also for the body fat data. We
will seek some reasons for this contradictory results by investigating sources of the Dr values for
observations 1 and 3. Detailed computations will not be included here. The four eigenvalues of
XT X are 81290.24, 294.25, 119.82, 0.00062. The eigenvector corresponding to the last eigenvalue
is (0.99909, 0.03012,−0.02583,−0.01592). Euclidean norm ||β̂ − β̂(r)|| is 72.92 for observation 1 and
37.47 for observation 3.

(a) An investigation of the closeness between a normalized vector of each β̂−β̂(r) and each eigenvector
of XT X shows that cos θr4 is −0.9999988 for observation 1 and 0.9999891 for observation 3, which
implies that both vectors β̂− β̂(1) and β̂− β̂(3) are almost parallel to the last eigenvector g4 of XT X.
Also, both vectors β̂− β̂(1) and β̂− β̂(3) are almost orthogonal to each of the remaining eigenvectors
of XT X.

(b) For observations 1 and 3, the ratio cos2 θ3i/ cos2 θ1i is 5.09, 5.18, 15.26 for i = 1, 2, 3, respectively.
Hence observation 3 is located closer to all of three axes g1, g2, g3 than observation 1.

(c) In the light of the results in (a), among the components of Dr (r = 1, 3) given in the first expression
of equation (2.1), only the component

l4
[(
β̂ − β̂(r)

)T
g4

]2

pσ̂2

nearly makes a real contribution to the influence of observation r on β̂, and its value is 0.133 for
observation 1 and 0.035 for observation 3. Also, the proportion of l4[(β̂ − β̂(r))T g4]2/pσ̂2 to Dr

is about 48% for observation 1 and about 12% for observation 3. On the other hand, since the
line Vr (r = 1, 3) is almost orthogonal to all of the remaining eigenvectors g1, g2, g3 of XT X, the
component of Dr associated with the eigenvectors g1, g2, g3 which is

1
pσ̂2

3∑
i=1

li
[(
β̂ − β̂(r)

)T
gi

]2
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is likely to distort the influence of observation r on β̂. The component
∑3

i=1 li[(β̂−β̂(r))T gi]2 is 0.146
for observation 1 and 0.264 for observation 3. The extent that the distance D3 distorts the influence
of observation 3 on β̂ is more severe than that of D1. The component

∑3
i=1 li[(β̂ − β̂(r))T gi]2/pσ̂2

plays a role of making the value of D3 large, while it plays a role of making the value of D1
relatively small. Hence the distance D3 enlarges the influence of observation 3 on β̂, while the
distance D1 reduces the influence of observation 1.

This is a reason why observation 3 has the largest Dr value, D3 = 0.299, though it is not identified as
a significantly influential observation by the Mr values.

Furthermore, the Dr values do not provide useful information about influential observations for
each regression coefficient but the Mr values do as can be seen in what follows. Numerical compu-
tations of the values β̂k − β̂k(r), k = 0, 1, 2, 3; r = 1, . . . , 20 show that deletion of observation 1 has
the largest change in β̂k for all k = 0, 1, 2, 3: β̂0 − β̂0(r) is −72.86 for observation 1 and 37.44 for
observation 3, β̂1 − β̂1(r) is −2.12 for observation 1 and 1.02 for observation 3, β̂2 − β̂2(r) is 1.88 for
observation 1 and −0.87 for observation 3, β̂3 − β̂3(r) is 1.08 for observation 1 and −0.69 for observa-
tion 3. Observation 3 is identified as the most influential one by the Dr values but it does not have a
significant influence on any estimate β̂k (k = 0, 1, 2, 3).

3.3. Rat data

The regression model with the intercept term β0 is fitted to the rat data set which consists of 19
measurements on a single dependent variable and three independent variables. The least squares
estimates of the regression coefficients are β̂0 = 0.27, β̂1 = −0.02, β̂2 = 0.01, and β̂3 = 4.18.

For the Dr values, observation 3 has the largest value D3 = 0.930. For the Mr values, observation 3
has the largest value M3 = 1864.3. Both influence measures lead to the same conclusion that observa-
tion 3 is the most influential one. We will briefly seek some reasons for the same conclusion. Detailed
computations will not be included here. The four eigenvalues of XT X are 565097.6, 20.5, 0.16, 0.003.
The eigenvector g4 corresponding to the last eigenvalue is (0.0213,−0.0052, 0.0005, 0.9998). For
observation 3, we have Euclidean norm ||β̂ − β̂(3)|| = 2.684.

The cosine of the angle between β̂ − β̂(3) and g4 is 0.9993, which implies that β̂ − β̂(3) is almost
parallel to the last eigenvector g4 of XT X and that it is almost orthogonal to each of the remaining
eigenvectors of XT X. Hence, among the components of D3, only the component l4[(β̂−β̂(3))T g4]2/pσ̂2

nearly makes a real contribution to the influence of observation 3 on β̂, and its value is 0.781. The
component

∑3
i=1 li[(β̂ − β̂(3))T gi]2 is 0.149. Also, the proportion of l4[(β̂ − β̂(3))T g4]2/pσ̂2 to D3 is

about 84% and it is very high. Therefore the extent that the distance D3 reflects the real influence of
observation 3 on β̂ is very high so that the value D3 can yield the same result as the value M3.

4. Concluding remarks

The distance Dr is defined by scaling β̂ − β̂(r) using the matrix XT X. Almost all of the eigenvectors
XT X are not in general parallel to the line Vr over which β̂ − β̂(r) is distributed. The distance Dr

inevitably includes the component associated with the axes other than the axis determined by the line
Vr. This component of Dr can be a source of distorting the influence of observation r on β̂. Hence the
information about influential observations that the Cook’s distance provides may not be reliable. The
first two examples analyzed in the previous section show defects of the distance Dr as an influence
measure, while the three examples show that the Mr values can be a useful influence measure.
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