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Abstract
It is well known in a small sample that the maximum likelihood (ML) approach for variance components in

the general linear model yields estimates that are biased downward. The ML estimate of residual variance tends
to be downwardly biased. The underestimation of residual variance, which has implications for the estimation
of marginal effects and asymptotic standard error of estimates, seems to be more serious in some limited depen-
dent variable models, as shown by some researchers. An alternative frequentist’s approach may be restricted or
residual maximum likelihood (REML), which accounts for the loss in degrees of freedom and gives an unbiased
estimate of residual variance. In this situation, the REML estimator is derived in a censored regression model. A
small sample the REML is shown to provide proper inference on regression coefficients.
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1. Introduction

Consider a linear regression model:

wi = x′iβ + ϵi, i = 1, 2, . . . , n, (1.1)

where wi is the dependent variable, xi is the p × 1 vector of predictors, β is the p × 1 vector of regres-
sion coefficients. The standard assumption of the error term, viz. ϵi’s are independent and identically
distributed normal random variables, implies that the dependent variable can be any real number;
however, in many statistical analysis the dependent variable can only have limited ranges. For exam-
ple, the variable of interest is constrained to lie between zero and one (as in the case of a probability)
or is constrained to be positive (as in the case of wages or hours worked). In an econometrics context,
a dependent variable whose range of possible values is “restricted in some important way” is defined
to be a limited dependent variable (LDV). The probit or logistic regression, the Poisson regression,
the truncated regression and the censored regression are examples of and LDV model.

Currently, the maximum likelihood (ML) is a dominating method for LVD models; however, the
ML gives biased estimates for variance components in a general mixed linear model. In particular,
the ML estimate of disturbance variance is known to be biased downward. Therefore, the inferences
on the regression coefficients will have inflated type I error rates because their precision is overstated.
The underestimation is because the fixed effects are assumed to be known without error in the ML
approach. The downward bias would be more severe in the LDV models because the dependent
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variable is observable only in a limited range as shown by Green (2004), and Lee and Choi (2013,
2014). This leads to a discussion of the estimation method for the LDV models in small samples.

The restricted maximum likelihood (REML) could be an alternative frequentist’s method, which
also has a Bayesian justification. It might be expected that the REML can eliminate the bias of ML
since the REML divides the mean squared deviation by the degrees of freedom instead of by the
sample size. Consequently, we investigate the behavior of the REML estimator.

Hughes (1999) provided the REML estimate in a general mixed effects linear model with censored
data using a Monte Carlo EM algorithm and claimed that the approach can be used with an arbitrarily
complex design matrix. A Monte Carlo EM algorithm employing the Gibbs sampler is adequate to
provide an estimate in the general mixed effects model. Many numerical methods have been employed
to get the REML estimate in the LDV models, see Noh and Lee (2007) for further details. However,
the numerical method lacks the capacity to provide standard error estimates. For instance, Hughes
(1999) gave an asymptotic approximation for the variances of fixed effects only, but the asymptotic
variance is obtained by not including the estimation of variance components. Thus, the approximation
may be too rough to evaluate the performance of estimation methods. A sharp asymptotic approxima-
tion requires the computation of the second order derivative of log-likelihood functions. This paper
shows that second order derivatives are tractable in a censored regression model.

Censored regression models commonly arise in econometrics. For instance, suppose a labor sup-
ply model estimates the relationship between hours worked and employee characteristics. The esti-
mates undertaken using linear regression will be biased since the hours of work would be zeros for
the people who are unemployed. The Tobit model, proposed by Tobin (1958), describes the relation-
ship between a non-negative dependent variable and independent variables. It is a special case of a
censored regression that is essentially equivalent to general censored regression called Tobit type I,
see Amemiya (1985). Section 2 provides the REML for the Tobit regression model.

2. The restricted maximum likelihood (REML) estimation of Tobit model

The standard Tobit model assumes that observed dependent variable yi is given by:

yi =

wi, if wi > 0,
0, if wi ≤ 0,

(2.1)

where wi is a latent variable determine by equation (1.1). A common variation of the Tobit model
is censoring from below at a value yL different from zero, or is censoring above at a value yU , or is
simultaneously censoring from above and below. The variations classified into the Tobit type I, and
the REML method of the Tobit type I models are essentially equal to the original Tobit model.

For model (2.1), Tobin (1958) provided the ML estimate. Later, Amemiya (1984) proved that
the maximum likelihood estimation (MLE) suggested by Tobin is consistent. The ML method is
implemented in various R packages that include applied econometrics with R (Kleiber and Zeileis,
2009), censored regression model (censReg) (Henningsen, 2017), and nondetects and data analysis
(Lee, 2017).

The REML introduced by Patterson and Thomson (1971) transforms the dependent variable, z1 =

L′1w and z2 = L′2w to partition the likelihood into two independent parts, where L1 = X(X′X)−1 and
L2 be such that L′2X = 0, L′2L2 = I and L2L′2 = I−H, where H = X(X′X)−1X′ and X = (x1, . . . , xn)′.
The first transformed variable relates to the fixed effects and the second one relates to the residual
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contrast. Then, under the normality assumption of error terms, we have(
z1
z2

)
∼ MVN

((
β
0

)
, σ2

(
(X′X)−1 0

0 I

))
.

Thus, L(β, σ2; z) = L1(β, σ2; z1) × L2(σ2; z2), where

L1

(
β, σ2; z1

)
∝

(
σ2

)p/2
exp

[
− 1

2σ2 (z1 − β)′ X′X (z1 − β)
]

and

L2

(
σ2; z2

)
∝

(
σ2

)(n−p)/2
exp

[
− 1

2σ2 z′2 z2

]
.

Let R = {w : y(w) = y} be the set of latent variables given the observed data y, then the marginal
log-likelihood function of the observed data y is

log L
(
β, σ2; y

)
= log

∫
R

L1

(
β, σ2; z1

)
dµ + log

∫
R

L2

(
σ2; z2

)
dµ, (2.2)

where µ is the Lebesgue measure. The REML of θ = (β, σ2) is obtained by maximizing the two terms
in equation (2.2) separately, and are the solutions of equations:

S 1 (θ) =
∂ℓ1

∂β
=

∂

∂β
log

∫
R

L1

(
β, σ2; z1

)
dµ

=

∫
R
−X′X
σ2 (β − z1) f (z1) dµ

/ ∫
R

f (z1) dµ

= −X′X
σ2 (β − E (z1| y)) = 0, (2.3)

S 2 (θ) =
∂ℓ2

∂σ2 =
∂

∂σ2 log
∫
R

L2

(
σ2; z2

)
dµ

= −n − p
2σ2 +

∫
R

z′2 z2

2σ4 f (z2) dµ
/ ∫
R

f (z2) dµ

= −n − p
2σ2 +

1
2σ4 E

(
z′2 z2| y

)
= 0. (2.4)

If yi = 0, then wi ∼ T N(−∞,0](x′iβ, σ
2), a truncated normal distribution on (−∞, 0] with mean x′iβ

and variance σ2, while wi is degenerating at yi, if yi > 0. Thus, the moments of a truncated normal
random variable are useful in what follow: Let ϕ and Φ are the pdf and cdf of a standard normal
distribution, and suppose Y ∼ T N(−∞,0](µ, σ2). Then, using

MY (t) = exp
(
µt +

1
2
σ2t2

) [
Φ

(
− µ
σ
− σt

)/
Φ

(
− µ
σ

)]
,
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we have

E(Y) = µ − σλ
(
µ

σ

)
, E

(
Y2
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= µ2 + σ2 − µσλ

(
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)
,

E
(
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, E
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(
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)
,

where λ(x) = ϕ(x)
/
Φ(−x), the inverse of Mill’s ratio. In particular, if yi = 0,

Eθ (wi| y) = x′iβ − σλ
( x′iβ
σ

)
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Also, (
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where γ = β or γ = σ2.
For notational convenience, we assume that the last m observations of dependent variable are

zero. Then, the vector of observed dependent variable is y′ = (y′1, 0
′). Write w′ = (w′1,w

′
2) and X′ =

(X′1,X2
′), where w2 = (w21, . . . ,w2m)′ and X2 are the vector of latent variables and the design matrix,

respectively, corresponding to zero observations. Let Hi j = Xi(X′X)−1X j. With these notations, the
conditional expectations in equations (2.3) and (2.4) can be written as

Eθ (z1|y) =
(
X′X

)−1 (
X′1y1 + X′2Eθ (w2|y)

)
and

Eθ
(
z′2 z2|y

)
=y′1 (I − H11) y1 − 2y′1H12Eθ (w2|y)

+

m∑
i=1

(
1 − h22

ii

)
Varθ (w2i|y) + Eθ

(
w′2|y

)
(I − H22) Eθ (w2|y) ,

where h22
i j is (i, j) element of H22.
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Let S′(θ) = (S ′1(θ), S 2(θ)). The REML estimate of θ can be found by applying the Newton-
Raphson method,

θ̂(i+1) = θ̂(i) − J−1(θ̂(i))S(θ̂(i))

with an arbitrary initial value θ̂(0), where J(θ) is the Jacobian of S(θ),

J(θ) =
∂

∂θ
S(θ) =


∂

∂β′
S 1(θ)

∂

∂σ2 S 1(θ)

∂

∂β′
S 2(θ)

∂

∂σ2 S 2(θ)

 .
The elements of Jacobian matrix are:

∂S 1(θ)
∂β′

= − 1
σ2 X′X +

1
σ4 X′2V2X2, (2.5)

∂S 1(θ)
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X′X
σ4

[
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]
+

1
σ2 X′2

∂
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∂S 2(θ)
∂β′

=
1
σ6

{E (
w′2| y

)
(I − H22) − y′1H12

}
V2X2 +

1
2

m∑
i=1

(
1 − h22

ii

) ∂

∂β′
Var (w2i| y)

 ,
∂S 2(θ)
∂σ2 =

n − p
2σ4 −

1
σ6 E(z′2 z2|y) +

1
σ4

1
2
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i=1

(
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ii

) ∂

∂σ2 Var(w2i|y)

+
{
E(w′2|y)(I − H22) − y′1H12

} ∂

∂σ2 E(w2|y)
]
.

The computation of REML estimate is relatively easy. In fact, we can easily get the REML
estimate, θ̂ by applying the EM algorithm. The real problem in REML is the computation of the
standard error of estimate, because we cannot use standard ML theory. For instance, second-order
derivatives of ℓ2(θ) are useless. However, if the variance of S(θ) is available, the asymptotic variance
of θ̂ can be obtained by using Taylor series expansion,

S(θ) ≈ S
(
θ̂
)
+ J

(
θ̂
) (
θ̂ − θ

)
.

Since, S(θ̂) = 0, an asymptotic variance of θ is

Var
(
θ̂
)
≈ J−1

(
θ̂
)

[Var (S (θ))]
[
J−1

(
θ̂
)]′
. (2.6)

To compute equation (2.6), we first note that ∂S 1(θ)/∂β′ = ∂2ℓ1/∂β∂β
′ = ∂2 log L/∂β∂β′. That

is, the score functions of ML and REML are the same. Thus, using the ML theory, we have

Var (S 1 (θ)) = −E
[
∂2ℓ1

∂β∂β′

]
=

1
σ2 X′X − 1

σ4 X′2V2X2.

However, ∂S 2(θ)/∂σ2 cannot be related to the variance of S 2(θ). To compute Var(S 2(θ)), we can use
the relationship, Var(E(X|Y)) = Var(X) − E(Var(X|Y)). Consequently,

Var (S 2 (θ)) =
1

4σ8

[
Var

(
w′(I − H)w

) − E
(
Var(w′(I − H)w| y)

)]
. (2.7)
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Since, w′(I−H)w/σ2 ∼ χ2
n−p, the first term of right-hand side of equation (2.7) is equal to (n− p)/2σ4,

and in the second terms,

Var (w (I − H) w| y) = Var
(
w′2 (I − H22) w2 − 2y′1H12w2| y

)
= Var

(
w′2 (I − H22) w2| y

)
+ 4y′1H12V2H′12y1 − 4y′1H12Cov

(
w2,w′2(I−H22) w2| y

)
.

It can be shown that
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∑∑
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(
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)
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E
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∣∣∣ y
)
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(
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)
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[
E

(
w4

2i

∣∣∣ y
)
−

(
E

(
w2

2i

∣∣∣ y
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+ 2
∑∑
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E
(
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2 j

∣∣∣ y
)
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(
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]

and
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(
w2,w′2 (I − H22) w2| y

)
=

{ (
1 − h22

ii

) [
E

(
w3

2i

∣∣∣ y
)
− E (w2i| y) E

(
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2i
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− 2
∑
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i j Var (w2i| y) E

(
w2 j| y

) }m

i=1
.

Var(S 2(θ)) in equation (2.7) plays a role of the expected information; however, Efron and Hinkley
(1978) showed that (in most cases) observed information is a more appropriate measure of information
than the expected information. Thus, we substitute the non-expected version of equation (2.7) for
Var(S 2(θ)), i.e., we replace

n − p
2σ4 +

1
σ8

[
y′1H12

{
V2H′12y1 − Cov

(
w2,w′2 (I − H22) w2| y

)}
+

1
4

Var (w2 (I − H22) w2| y)
]

for Var(S 2(θ)).
Similarly, the covariance of S 1(θ) and S 2(θ) is

Cov (S 1 (θ) , S 2 (θ)) =
1

2σ6

[
Cov

(
z1, z′2 z2

) − X′X E
(
Cov

(
z1, z′2 z2| y

))]
=

1
σ6 E

[
X′2

{
1
2

Cov
(
w2,w′2 (I − H22) w2| y

) − V2H′12y1

}]
, (2.8)

but we use the non-expected value of equation (2.8) for Cov(S 1(θ), S 2(θ)).

Remark 1. When compute the estimate, the EM algorithm is preferable to the Newton-Raphson
method, because it does not require second-order derivatives and a matrix inversion. The number
of iterations seems to be almost the same in our experiment. Thus, we compute the second-order
derivatives to compute the standard error of estimate after obtaining the estimate by EM algorithm.
The (i + 1)th iteration of EM algorithm can be done by

β̂(i+1) = E(θ̂(i),σ̂
2
(i))

(z1|y),

σ̂2
(i+1) =

1
n − p

E(β̂(i+1),σ̂
2
(i))

(z′2 z2| y).
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Table 1: Estimates of Tobit model for Tobin data

Parameter Maximum likelihood Restricted maximum likelihood
Estimate Std err t value Pr (> t) Estimate Std err t value Pr (> t)

(Intercept) 15.1449 16.0795 0.942 0.346 15.7773 20.4878 0.770 0.441
age −0.1291 0.2186 −0.590 0.555 −0.1639 0.2842 −0.577 0.564

quant −0.0455 0.0583 −0.782 0.434 −0.0458 0.0741 −0.617 0.537
logSigma 1.7179 0.3103 5.536 3.1e−8 1.9527 0.4061 4.808 1.5e−6

Sigma 5.5725 1.7293 7.0478 2.8624

3. Examples

3.1. Tobin data

Tobin data, introduced by Tobin (1958) to illustrate the Tobit model, consists of 20 observations on
3 variables, age, quant (liquidity ratio) and durable (durable goods purchase), and 13 observations of
dependent variable, durable are censored from below at 0. This data may be adequate to demonstrate
the small sample properties of the ML and REML.

The ordinary least squares method provides biased estimates of regression coefficients due to the
large fraction of censored dependent variable; however, the ML method provides a downwardly biased
estimate of residual variance. The estimates of ML and REML are shown in Table 1. We use censReg
(Henningsen, 2017) to compute MLEs.

Regression coefficients are estimated to nearly the same values for all variables. The largest ab-
solute difference in the estimation of the regression coefficient, occurs at the coefficient of “age”
is 0.0348, which may be negligible. To see this more clearly, the two estimates are plotted in
N(−0.1639, 0.28422) by assuming the REML provides correct values so that the asymptotic distri-
bution of REML estimator would be a normal distribution with mean −0.1639 and standard deviation
0.2842. Figure 1(a) indicates that it may be concluded that two estimates are quite close. Unlike
the regression coefficients, the ML and REML estimates of residual variance are different. The ML
gives a smaller estimate of the residual variance than REML. Figure 1(b) shows the distance between
estimates in N(1.9527, 0.40612), to demonstrate that the difference seems to be significant.

The MLE of residual variance is often biased downward when the sample size is small. The
underestimation of residual variance would lead to the underestimated standard error of regression
coefficients. REML gives larger standard errors for all slope parameters as well variance estimate
than the ML; therefore, REML is believed to somewhat remedy the underestimation of MLE in Tobin
data.

3.2. Mroz data

The second data set comes from the 1976 Panel Study of Income Dynamics (Mroz , 1987). It con-
sists 753 observations on 19 variables, but we take 8 variables, hour (working hours of married white
women, dependent variable), age, wage, educ (educational attainment in years), kidslt6 (number of
children less than 6 years old in household), kidge6 (number of children between ages 6 and 18 in
household), nwifeinc (net wife income), exper (actual years of wife’s previous labor market experi-
ence), and exper2 (experˆ2) to fit the model given in Wooldridge (2009).

Of the 753 observations, the first 428 are for women with positive hours worked in 1975, while
the remaining 325 observations are for women who did not work for pay in 1975. This data was cited
in various literatures as an example of probit and logistics regression models by making dependent
variable dichotomous. It is believed that the Mroz data is suitable to show a large sample property of
REML.
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(a) Age (b) logσ

Figure 1: Distance between maximum likelihood (“△”) and restricted maximum likelihood (“⃝”) estimates.

Table 2: Estimates of Tobit model for Mroz data

Parameter Maximum likelihood Restricted maximum likelihood
Estimate Std err t value Pr (> t) Estimate Std err t value Pr (> t)

(Intercept) 965.3053 446.4360 2.162 0.0306 960.7502 450.4161 2.133 0.0329
nwifeinc −8.8142 4.4591 −1.977 0.0481 −8.8597 4.4988 −1.969 0.0489

educ 80.6456 21.5832 3.736 0.0002 81.1313 21.7766 3.726 0.0002
exper 131.5643 17.2794 7.614 2.e−14 132.1379 17.4375 7.578 3.e−14

exper2 −1.8642 0.5377 −3.467 0.0005 −1.8738 0.5425 −3.454 0.0005
age −54.4050 7.4185 −7.334 2.e−13 −54.6125 7.4854 −7.296 2e−13

kidslt6 −894.0217 111.8780 −7.991 1.e−15 −897.7255 112.8874 −7.952 1.e−15
kidsge6 −16.2180 38.6414 −0.420 0.6747 −15.9904 38.9846 −0.410 0.6817

logSigma 7.0229 0.0371 189.514 0.0000 7.0315 0.0374 187.916 0.0000

Table 2 shows the ML and REML estimates. As the case of Tobin data, the estimates of regression
coefficients are nearly equal. The estimation of residual variance indicates that the estimate of REML
is slightly larger than ML. REML often has slightly larger standard errors due to the slightly larger
estimate of residual variance; however, the differences are statistically insignificant. Both methods re-
port almost identical t and p-values due to the similar values; consequently, the inference based on the
ML and REML estimates would get a similar conclusion on the regression model. This result is pre-
dictable since the downward bias of MLE is a small sample property. Based upon these observations,
we may say that two methods are statistically identical in Mroz data.

4. Simulation study and conclusion

REML is distinguished from ML in the estimations of the residual variance and the standard error
of regression coefficient when the sample size is small. REML is believed to be a proper method
when the sample size is small. To see this, a simulation study has been done on the study design used
in Bilias et al. (2000) and Yu and Stander (2007). That is, for a Tobit regression model, the latent
variable was generated according to

wi = max {β0 + β1x1 + β2x2 + ϵ, 0} , ϵ ∼ N(0, σ2).
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Table 3: Simulation result with (β0, β1, β2, logσ) = (1, 1, 1, 0)

n θ
Maximum likelihood Restricted maximum likelihood

Estimate Std err Coverage MSE MAE Estimate Std err Coverage MSE MAE

30

β0 0.9894 0.2187 0.9396 0.0531 0.1810 0.9704 0.2336 0.9514 0.0564 0.1856
β1 0.9989 0.1849 0.9288 0.0380 0.1552 1.0086 0.1970 0.9424 0.0390 0.1573
β2 1.0067 0.1565 0.9346 0.0274 0.1312 1.0163 0.1669 0.9472 0.0284 0.1333

logσ −0.0792 0.1476 0.8918 0.0311 0.1391 −0.0172 0.1579 0.9474 0.0257 0.1262

50

β0 0.9914 0.1724 0.9386 0.0325 0.1421 0.9822 0.1787 0.9448 0.0335 0.1440
β1 1.0047 0.1512 0.9420 0.0245 0.1256 1.0106 0.1567 0.9486 0.0249 0.1266
β2 1.0075 0.1487 0.9392 0.0244 0.1252 1.0133 0.1540 0.9470 0.0248 0.1263

logσ −0.0431 0.1123 0.9232 0.0155 0.0990 −0.0083 0.1166 0.9488 0.0139 0.0943

100

β0 0.9979 0.1158 0.9414 0.0138 0.0934 0.9931 0.1179 0.9434 0.0140 0.0941
β1 1.0007 0.1117 0.9398 0.0133 0.0912 1.0044 0.1137 0.9436 0.0134 0.0917
β2 1.0036 0.1150 0.9404 0.0139 0.0940 1.0065 0.1170 0.9432 0.0140 0.0943

logσ −0.0237 0.0820 0.9352 0.0075 0.0689 −0.0063 0.0836 0.9482 0.0070 0.0669

200

β0 0.9984 0.0801 0.9484 0.0065 0.0638 0.9959 0.0809 0.9488 0.0065 0.0641
β1 1.0012 0.0805 0.9558 0.0064 0.0643 1.0033 0.0813 0.9578 0.0065 0.0645
β2 1.0020 0.0822 0.9532 0.0066 0.0652 1.0039 0.0829 0.9558 0.0066 0.0654

logσ −0.0114 0.0598 0.9406 0.0037 0.0485 −0.0024 0.0605 0.9490 0.0036 0.0480

MSE = mean squared error; MAE = mean absolute error.

Regressors x1 and x2 are generated by a Bernoulli random number taking −1 and 1 each with proba-
bility 1/2, and a standard normal random number, respectively. The parameter (β0, β1, β2, logσ) is set
to (1, 1, 1, 0). With this setting, the censoring level is approximately 30%.

Based upon 5,000 replications, the averages of estimates and standard errors are presented in
Table 3 for n = 30, 50, 100, and 200. The empirical mean squared error and mean absolute error are
computed. In addition, to measure an adequacy of standard error, a 95% Wald confidence interval is
constructed for each parameter that then calculates the empirical coverage probability. The coverage
probability should be close to 0.95 if the standard error were correct.

The regression parameter estimates are shown to be quite close for all sample sizes. However, the
estimates of logσ are not similar when the sample size is small (Figure 2). In particular, when n = 30,
the differences in the standard errors and the estimates of logσ seem to be significant. Note that the
coverage probabilities of REML are closer to the nominal level than the ML for all cases, particularly
for logσ, it may conclude that the REML can provide a better estimate of the residual variance and
the standard error. However, the ML has a uniformly smaller mean squared error and mean absolute
error for the estimation of the regression coefficient. The ML theoretically appears when we estimate
the slope parameter itself. However, the inference such as the interval estimation or the hypothesis
testing on the slope parameters based on the MLE may be inadequate when the sample size is small,
say n ≤ 50. Perhaps, this is well known in the general linear model.
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