DOI QR코드

DOI QR Code

수도권과 지방권 수요예측모형을 통한 전국 도시가스수요전망의 예측력 향상

Improving Forecast Accuracy of City Gas Demand in Korea by Aggregating the Forecasts from the Demand Models of Seoul Metropolitan and the Other Local Areas

  • 이성로 (한국가스공사 경영연구소)
  • Lee, Sungro (Center for Gas Economics and Management, Korea Gas Corporation)
  • 투고 : 2017.10.10
  • 심사 : 2017.12.14
  • 발행 : 2017.12.31

초록

본 연구는 지역 단위 도시가스 수요예측모형을 이용하여 전국 도시가스수요예측의 정확도를 향상할 수 있는지 여부를 살펴봤다. 지역별 수요예측모형을 구축하게 된 배경은 용도별 도시가스 수요의 행태가 분화되는 상황에서 자료의 제한으로 용도별 수요예측모형을 구축하기 어렵다는 것에 있다. 지역별 수요예측모형은 전국수요를 수도권과 지방으로 구분하여 별도의 예측모형을 구성하는 것으로, 시간변동계수를 갖는 공적분모형을 이용하였다. 지역모형에서 전국 도시가스수요예측은 지역별 수요전망치를 합산하여 산출하였다. 2013~2016년의 4년간 예측력 평가결과, 지역별 모형을 통한 전국 도시가스수요 예측이 전국단위 예측모형에 비하여 예측력이 전반적으로 우수한 것으로 나타났다. 지역모형에서는 수도권과 지방권 모형을 별도로 구축함으로써 해당 지역 수요의 특성을 반영한 예측모형이 가능했다. 수도권수요는 가정용수요 비중이 높아 기온에 보다 민감하게 반응하고, 전력수요와 경쟁관계가 있다. 이에 반해 지방권은 산업용수요 비중이 높아 전반적인 경기상황에 따른 수요변동이 크고, 수도권과 달리 벙커씨유와 LPG와 같은 산업용 연료와 대체관계를 보였다. 상기 결과는 성숙기에 접어든 도시가스산업에서 지역별 수요에 대한 세부적인 분석을 통해 전국 단위 수요예측의 정확도를 향상시킬 수 있다는 것을 보여주고, 이와 더불어 용도별 도시가수요 분석에도 유용한 정보를 제공할 것으로 기대한다.

This paper explores whether it is better to forecast city gas demand in Korea using national level data directly or, alternatively, construct forecasts from regional demand models and then aggregate these regional forecasts. In the regional model, we consider gas demand for Seoul metropolitan and the other local areas. Our forecast evaluation exercise for 2013-2016 shows the regional forecast model generally outperforms the national forecasting model. This result comes from the fact that the dynamic properties of each region's gas demands can be better taken into account in the regional demand model. More specifically, the share of residential gas demand in the Seoul metropolitan area is above 50%, and subsequently this demand is heavily influenced by temperature fluctuations. Conversely, the dominant portion of regional gas demand is due to industrial gas consumption. Moreover, electricity is regarded as a substitute for city gas in the residential sector, and industrial gas competes with certain oil products. Our empirical results show that a regional demand forecast model can be an effective alternative to the demand model based on nation-wide gas consumption and that regional information about gas demand is also useful for analyzing sectoral gas consumption.

키워드

참고문헌

  1. 김인무.김창식.박성근, "에너지 상대가격 변화에 따른 에너지 수요예측", 경제학연구, 제59권 제4호, 2011, pp. 199-228.
  2. 박명덕, 이상열, "산업용 도시가스 수요변화 요인분석", 에너지경제연구원 수시연구보고서, 2015.
  3. 박준용, "장단기 천연가스 수요전망", 한국가스공사, 2004.
  4. 박진수.김윤배.정철우, "도시가스 일일수요의 단기예측", 대한산업공학회지, 제39권 제4호, 2013, pp. 247-252. https://doi.org/10.7232/JKIIE.2013.39.4.247
  5. 이성로, "중장기 관점에서 본 도시가스용 천연가수요 트렌트", 가스산업, 제14권 제2호, 2015, pp. 1-12.
  6. 이승재.어승섭.유승훈, "시계열 자료를 이용한 도시가스의 수요함수 추정", 에너지공학, 제22권 제4호, 2013, pp. 370-375. https://doi.org/10.5855/ENERGY.2013.22.4.370
  7. Barker, T. and M. H. Pesaran, Disaggregation in Econometric Modelling, London and New York, Routledge, 1990.
  8. Bartelsman, E. J. and Z. Wolf, "Forecasting Aggregate Productivity Using Information from Firm-level Data," Review of Economics and Statistics, Vol. 96, No. 4, 2014, pp. 745-755. https://doi.org/10.1162/REST_a_00395
  9. Bermingham, C. and A. D'Agostino, "Understanding and Forecasting Aggregate and Disaggregate Price Dynamics," Empirical Economics, Vol. 46, No. 2, 2014, pp. 765-788. https://doi.org/10.1007/s00181-013-0685-6
  10. Bernstein, M. A. and J. Griffin, Regional Differences in Price-elasticity of Demand for Energy, The Rand Corporation Technical Report, A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy, 2005.
  11. Chang, Y., C. S. Kim, J. I. Miller, J. Y. Park, and S. Park, "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Vol. 46, 2014, pp. 334-347. https://doi.org/10.1016/j.eneco.2014.10.003
  12. Chang, Y., C. S. Kim, J. I. Miller, J. Y. Park, and S. Park, "A New Approach to Modeling the Effects of Temperature Fluctuations on Monthly Electricity Demand," Energy Economics, Vol. 60, 2015, pp. 206-216.
  13. Chang, Y. and E. Martinez-Chombo, "Electricity demand analysis using cointegration and error-correction models with time varying parameters: The Mexican case," Rice University, 2003, WP2003-10.
  14. Chang, Y., Y. Choi, C. S. Kim, J. I. Miller, and J. Y. Park, "Disentangling Temporal Patterns in Elasticities: A Functional Coefficient Panel Analysis of Electricity Demand," Energy Economics, Vol. 60, 2016, pp. 232-243. https://doi.org/10.1016/j.eneco.2016.10.002
  15. De Gooijer, J. G. and R. J. Hyndman, "25 Years of Time Series Forecasting," International Journal of Forecasting, Vol. 22, No. 3, 2006, pp. 443-473. https://doi.org/10.1016/j.ijforecast.2006.01.001
  16. Duarte, C. and A. Rua, "Forecasting Inflation through a Bottom-up Approach: How Bottom is Bottom?," Economic Modelling, Vol. 24, No. 6, 2007, pp. 941-953. https://doi.org/10.1016/j.econmod.2007.03.004
  17. Grunfeld, Y. and Z. Griliches, "Is Aggregation Necessarily Bad?," The Review of Economics and Statistics, Vol. 42, No. 1, 1960, pp. 1-13. https://doi.org/10.2307/1926089
  18. Hubrich, K., "Forecasting Euro Area Inflation: Does Aggregating Forecasts by HICP Component Improve Forecast Accuracy?," International Journal of Forecasting, Vol. 21, No. 1, 2005, pp. 119-136. https://doi.org/10.1016/j.ijforecast.2004.04.005
  19. Hubrich, K. and F. Skudelny, "Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?," Journal of Forecasting, 2017, pp. 515-540.
  20. Maddala, G. S., R. P. Trost, H. Li, and F. Joutz, "Estimation of Short-run and Long-run Elasticities of Energy Demand from Panel Data Using Shrinkage Estimators," Journal of Business & Economic Statistics, Vol. 15, No. 1, 1997, pp. 90-100.
  21. Mark, N. C., M. Ogaki, and D. Sul, "Dynamic Seemingly Unrelated Cointegrating Regressions," The Review of Economic Studies, Vol. 72, No. 3, 2005, pp. 797-820. https://doi.org/10.1111/j.1467-937X.2005.00352.x
  22. Moser, G., F. Rumler, and J. Scharler, "Forecasting Austrian inflation," Economic Modelling, Vol. 24, Issue 3, 2007, pp. 470-480. https://doi.org/10.1016/j.econmod.2006.10.003
  23. Park, J. Y. and S. B., Hahn, "Cointegrating Regressions with Time Varying Coefficients," Econometric Theory, Vol. 15, No. 3, 1999, pp. 664-703.
  24. Stock, J. H. and M. W. Watson, "Macroeconomic Forecasting in the Euro Area: Country Specific Versus Area-wide Information", European Economic Review, Vol. 47, 2003, pp. 1-18. https://doi.org/10.1016/S0014-2921(02)00206-4
  25. Schwert, G. W., "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, Vol. 7, No. 2, 1989, pp. 147-159.
  26. Stcok, J, H., "Forecasting Economic Time Series," A Companion to Theoretical Econometrics, Blackwell Publisher, 2001, pp. 562-584.
  27. Zellner, A. and J. Tobias, "A Note on Aggregation, Disaggregation and Forecasting Performance," Journal of Forecasting, Vol. 19, No. 5, 2000, pp. 457-465. https://doi.org/10.1002/1099-131X(200009)19:5<457::AID-FOR761>3.0.CO;2-6