DOI QR코드

DOI QR Code

Paraelectric-Ferroelectric Phase Transition of (NH4)2SO4 Single Crystals by 14N NMR

  • Lim, Ae Ran (Analytical Laboratory of Advanced Ferroelectric Crystals, Jeonju University)
  • Received : 2017.04.30
  • Accepted : 2017.05.20
  • Published : 2017.06.20

Abstract

The $^{14}N$ NMR spectra for $(NH_4)_2SO_4$ crystals were obtained near the phase transition temperature $T_C=223K$, and were found to precisely reflect the symmetry change in the crystal at this first-order phase transition. Changes in the resonance frequencies near $T_C$ were attributed to the structural phase transition. In the ferroelectric and paraelectric phases, two inequivalent NH4 groups were distinguished in the $^{14}N$ NMR spectra. The two types, $NH_4$(1) and $NH_4$(2), have slightly different local environments. Consequently, we conclude that the phase transition is caused by the change in the environment of the $^{14}N$ nuclei in the $NH_4$ groups, rather than by the $SO_4$ groups.

Keywords

References

  1. M. Pham-Thi, Ph. Colomban, A. Novak, and R. Blinc, Solid State Commun. 55, 265 (1985) https://doi.org/10.1016/0038-1098(85)90605-2
  2. A. I. Baranov, I. P. Makarova, L. A. Muradyan, A. V. Trequbchenko, L. A. Shuvalov, and V. I. Simonov, Kristallografiya 32, 682 (1987)
  3. A. I. Baranov, V. P. Khiznichenko, and L. A. Shuvalov, Ferroelectrics 100, 135 (1989) https://doi.org/10.1080/00150198908007907
  4. G. A. Mohamad, J. Phys. Soc. Japan 71, 2550 (2002) https://doi.org/10.1143/JPSJ.71.2550
  5. J.-L. Dong, X.-H. Li, L.-J. Zhao, H.-S. Xiao, F. Wang, and X. Guo, J. Phys. Chem. B 111, 12170 (2007)
  6. V. I. Stadnyk, N. A. Romanyuk, M. R. Tuzyak, R. S. Brezvin, I. M. Matviishin, and V. M. Gaba, Opt. Spectrosc. 104, 870 (2008) https://doi.org/10.1134/S0030400X0806012X
  7. R. H. Chen, Y.-C. Chen, C. S. Shern, and T. Fukami, Solid State Ionics 180, 356 (2009) https://doi.org/10.1016/j.ssi.2009.02.014
  8. V. M. Gaba, Acta Phys. Pol. A 117, 126 (2010) https://doi.org/10.12693/APhysPolA.117.126
  9. B. Andriyevsky, K. Doll, and M. Jansen, J. Phys. Chem. Solids 71, 357 (2010) https://doi.org/10.1016/j.jpcs.2009.12.090
  10. Z. Zebiao, W. Wankun, and P. Jinhui, Adv. Mater. Res. 201-203, 1774 (2011) https://doi.org/10.4028/www.scientific.net/AMR.201-203.1774
  11. K.-S. Lee, I.-H. Oh, and J.-H. Ko, J. Solid State Chem. 212, 107 (2014) https://doi.org/10.1016/j.jssc.2014.01.014
  12. E. O. Schlemper and W. C. Hamilton, J. Chem. Phys. 44, 4498 (1966) https://doi.org/10.1063/1.1726666
  13. S.-B. Kwon and J.-J. Kim, J. Phys. Condens. Matter 2, 10607 (1990) https://doi.org/10.1088/0953-8984/2/51/030
  14. S. Ahmed, A. M. Shamah, R. Kamel, and Y. Badr, Phys. Status solidi A 99, 131 (1987) https://doi.org/10.1002/pssa.2210990116
  15. P. K. Bajpai and Y. S. Jain, J. Phys. C: Solid State 20, 387 (1987) https://doi.org/10.1088/0022-3719/20/3/009
  16. P. K. Bajpai, P. N. Ram, and Y. S. Jain, J. Phys. C: Solid State 20, 5577 (1987) https://doi.org/10.1088/0022-3719/20/33/015
  17. S. R. Miller, R. Blinc, M. Brenman, and J. S. Waugh, Phys. Rev. B 126, 528 (1962) https://doi.org/10.1103/PhysRev.126.528
  18. D. E. O'Reilly and T. Tsang, J. Chem. Phys. 46, 291 (1967)
  19. D. W. Kydon, H. E. Petch, and M. Pintar, J. Chem. Phys. 51, 487 (1969) https://doi.org/10.1063/1.1672022
  20. R. R. Knispel, H. E. Petch, and M. M. Pintar, J. Chem. Phys. 63, 390 (1975) https://doi.org/10.1063/1.431115
  21. K. S. Hong, S. G. Lee, I. Yu, and D. H. Shin, J. Korean Phys. Soc. 32, S656 (1998)
  22. T. Chiba, J. Chem. Phys. 36, 1122 (1962) https://doi.org/10.1063/1.1732703
  23. M. L. H. Gruwel, M. S. Mckinnon, and R. E. Wasylishen, Chem. Phys. Letters 139, 321 (1987) https://doi.org/10.1016/0009-2614(87)80565-1
  24. J.-J. Yi, W.-J. Kim, J.-K. Rhee, J. Lim, B.-J. Lee, and W. S. Son, J. Kor. Magn. Reson. Soc. 21, 26 (2017) https://doi.org/10.6564/JKMRS.2017.21.1.026