DOI QR코드

DOI QR Code

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles

볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험

  • Kim, Hyeon Jin (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Hwang, Hyeon Jong (College of Civil Engineering, Hunan University) ;
  • Park, Hong Gun (Dept. of Architecture & Architectural Engineering, Seoul National University) ;
  • Kim, Dong Kwan (Dept. of Architectural Engineering, Cheongju University) ;
  • Yang, Jong Min (Sen Structural Engineers Co. Ltd)
  • Received : 2016.10.13
  • Accepted : 2016.12.19
  • Published : 2017.04.27

Abstract

The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.

본 연구에서는 볼트조립 앵글을 적용한 선조립 합성기둥(이하 PSRC 합성기둥)의 압축성능을 연구하였다. 2/3 축소비율의 PSRC 기둥실험체 4개와 기존 SRC 기둥실험체 2개에 대하여 중심축 압축실험을 수행하였다. 횡보강재의 수직간격 및 단면형상과 앵글의 단면형상을 실험변수로 고려하였다. 실험결과, PSRC 기둥실험체는 기존 SRC 기둥실험체와 비교하여 비슷한 압축하중 재하능력 및 변형능력을 발휘하였다. PSRC 합성기둥의 경우, 횡방향 강판의 좁은 횡보강 간격과 Z형 단면의 강판이 압축강도 및 변형능력 향상에 효과적인 것으로 나타났다. 또한 PSRC 합성기둥은 현행설계기준에 의한 공칭 압축강도보다 큰 압축하중 재하능력을 나타내었다. 실험체들에 대한 수치해석결과는 피복 콘크리트 탈락으로 인한 하중감소를 제외하고 초기강성 및 하중재하능력을 비교적 잘 예측하였다.

Keywords

References

  1. 김형근, 김명한, 조남규, 김상섭, 김상대(2009) yLRC 합성기둥의 압축강도에 관한 실험 연구, 한국강구조학회논문집, 한국강구조학회, 제21권, 제5호, pp.545-552. Kim, H G., Kim, M.H., Jo, N.K., Kim, S.S., and Kim, S.D. (2009) Experimental Study on the Compressive Strength of yLRC Composite Columns, Journal of Korean Society of Steel Construction, KSSC, Vol.21, No.5, pp.222-232 (in Korean).
  2. Poon, E.D. (1999) Effect of column retrofitting on the seismic response of concrete frames, Dept. of Civil Engineering and Applied Mechanics, McGill Univ., USA.
  3. Montuori, R. and Piluso, V. (2009) Reinforced concrete columns strengthened with angles and battens subjected to eccentric load, Engineering Structures, Elsevier, Vol.31, No.2, pp.539-550. https://doi.org/10.1016/j.engstruct.2008.10.005
  4. 김보람, 강성덕, 김형근, 김명한, 김상대(2008) 강재 영구 거푸집을 사용한 yLRC 합성기둥의 내화성능 연구, 한국강구조학회논문집, 한국강구조학회, 제20권, 제3호, pp.365-375. Kim, B.R., Kang, S.D., Kim, H.G., Kim, M.G., and Kim, S.D. (2011) A Study On The Fire Resistance of yLRC Composite Columns with Steel Sheet Forms and Angles, Journal of ${\epsilon}_{75U}$ Korean Society of Steel Construction, KSSC, Vol.20, No.3, pp.365-375 (in Korean).
  5. 황현종, 엄태성, 박홍근, 이창남, 김형섭(2012) 고강도 앵글을 적용한 선조립 합성기둥의 압축실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제4호, pp.361-369. Hwang, H.J., Eom, T.S., Park, H.G., Lee, C.N., and Kim, H.S. (2012) Compression Test for Prefabricated Composite Columns Using High-Strength Steel Angles, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.4, pp.361-369 (in Korean).
  6. 엄태성, 황현종, 박홍근, 이창남, 김형섭(2012) 앵글과 철근을 조립한 PSRC 합성기둥의 휨 실험, 한국강구조학회논문집, 한국강구조학회, 제24권, 제5호, pp.535-547. Eom, T.S., Hwang, H.J., Park, H.G., Lee, C.N., and Kim, H.S. (2012) Flexural Test for Prefabricated Composite Columns Using Steel Angle and Reinforcing Bar, Journal of Korean Society of Steel Construction, KSSC, Vol.24, No.5, pp.535-547 (in Korean).
  7. 대한건축학회(2016) 건축구조설계기준 및 해설(KBC 2016), 기문당. AIK (2016) Korean building code and commentrary - structural, Architectural Institute of Korea (in Korean).
  8. AISC 360 (2010) Specification for Structural Steel Building (ANSI/AISC 360-10), American Institute of Steel Construction, USA.
  9. 한국산업표준(2013), 금속 재료 인장 시험 방법(KS B 0802), 국가기술표준원. Korean Standard (2013) Method of Tensile Test for Metallic Materials, Korean Agency for technology and Standards (in Korean).
  10. 한국산업표준(2010), 콘크리트의 압축 강도 시험 방법(KS F 2405), 국가기술표준원. Korean Standard (2010) Standard Test Method for Compressive Strength of Concrete, Korean Agency for technology and Standards (in Korean).
  11. Cusson, D. and Paultre, P. (1995) Stress-Strain Model for Confined High-Strength Concrete, Journal of Structural Engineering, Vol.121, No.3, pp.468-477. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:3(468)
  12. Scott, B.D., Park, R., and Priestley, M.J.N. (1982) Stress-Strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates, J. American Concrete Institute, Vol.79, No.1, pp.13-27.

Cited by

  1. 볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험 vol.29, pp.3, 2017, https://doi.org/10.7781/kjoss.2017.29.3.249
  2. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2017, https://doi.org/10.7781/kjoss.2019.31.6.381
  3. Axial Compression Behavior of Concrete-Encased Steel Angle Columns Using High-Strength Steel vol.31, pp.6, 2017, https://doi.org/10.7781/kjoss.2019.31.6.381
  4. Experimental Study on the Fire Resistance of Steel-Reinforced Concrete Column in Fire According to Load Ratio vol.31, pp.6, 2017, https://doi.org/10.7781/kjoss.2019.31.6.459
  5. Evaluation of Eccentric Axial Load Test of Concrete Filled Tube Columns According to Factor of Thin-Walled Section vol.32, pp.2, 2020, https://doi.org/10.7781/kjoss.2020.32.2.085
  6. Axial Compressive Behavior of Concrete-Encased High-Strength Steel Angle Columns vol.147, pp.4, 2017, https://doi.org/10.1061/(asce)st.1943-541x.0002908