DOI QR코드

DOI QR Code

Logistic Regression Ensemble Method for Extracting Significant Information from Social Texts

소셜 텍스트의 주요 정보 추출을 위한 로지스틱 회귀 앙상블 기법

  • 김소현 (서울시립대학교 전자전기컴퓨터공학과) ;
  • 김한준 (서울시립대학교 전자전기컴퓨터공학과)
  • Received : 2016.12.16
  • Accepted : 2017.01.27
  • Published : 2017.05.31

Abstract

Currenty, in the era of big data, text mining and opinion mining have been used in many domains, and one of their most important research issues is to extract significant information from social media. Thus in this paper, we propose a logistic regression ensemble method of finding the main body text from blog HTML. First, we extract structural features and text features from blog HTML tags. Then we construct a classification model with logistic regression and ensemble that can decide whether any given tags involve main body text or not. One of our important findings is that the main body text can be found through 'depth' features extracted from HTML tags. In our experiment using diverse topics of blog data collected from the web, our tag classification model achieved 99% in terms of accuracy, and it recalled 80.5% of documents that have tags involving the main body text.

빅데이터 시대를 맞이하여 텍스트마이닝과 오피니언마이닝의 활용도가 커지고 있는 시점에서 소셜 네트워크 서비스로부터 유용한 정보를 추출하는 작업은 매우 중요한 연구 주제 중 하나이다. 이에 본 논문은 블로그 HTML 문서에서 주요 본문을 찾는 로지스틱 회귀 앙상블 기법을 제안한다. 먼저, 블로그 HTML 태그에서 구조적 특징, 텍스트 특징을 추출한다. 그 다음, 블로그 HTML 문서에서 추출한 태그 특징에 로지스틱 회귀 및 앙상블 기법을 적용하여 본문을 포함하는 태그를 분류하는 모델을 구성한다. 본 연구의 중요한 발견 중 하나는 태그의 깊이 특징을 이용하여 주요 본문을 찾을 수 있다는 점이다. 다양한 주제의 국내 블로그 데이터를 이용한 실험에서 태그 분류 정확도가 99%, 본문을 찾아낸 문서의 비율이 80.5%로 평가되었다.

Keywords

References

  1. Jung-hwan Bae, Ji-eun Son, and Min Song, "Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques," Journal of Intelligence and Information Systems, Vol.19, No.3, pp.141-156, 2013. https://doi.org/10.13088/jiis.2013.19.3.141
  2. Yoon-Ju Lee, Ji-Joon Seo, and Jin-Tak Choi, "Fashion Trend Marketing Prediction Analysis Based on Opinion Mining Applying SNS Text Contents," Journal of Korean Institute of Information Technology (KIIT), Vol.12, No.12, pp.163-170, 2014.
  3. Imran, Muhammad et al., "Extracting information nuggets from disaster-related messages in social media," Proc. of ISCRAM, Baden-Baden, Germany, 2013.
  4. So-hyeon Kim and Han-joon Kim, "Extracting Significant Information from Social Text using Machine Learning," Korea Information Processing Society, The KIPS Fall Conference, Vol.23, No.2, pp.742-745, 2016.
  5. Wang, Changzhi et al., "Opinion Mining Research on Chinese Micro-blog," First International Conference on Information Science and Electronic Technology, 2015.
  6. Gulhane, Pankaj et al., "Exploiting content redundancy for web information extraction," Proceedings of the VLDB Endowment, Vol.3, pp.578-587, 2010.
  7. Bronzi, Mirko et al., "Extraction and integration of partially overlapping web sources," Proceedings of the VLDB Endowment, Vol.6, No.10, pp.805-816, 2013.
  8. Kohlschütter, Christian, Peter Fankhauser, and Wolfgang Nejdl, "Boilerplate detection using shallow text features," Proceedings of the Third ACM International Conference on Web Search and Data Mining, pp.441-450, 2010.
  9. Tomaz K, Evaluating Text Extraction Algorithms [Internet], http://tomazkovacic.com/blog/.
  10. Sun, Fei, Dandan Song, and Lejian Liao, "Dom based content extraction via text density," Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.245-254, 2011.
  11. Narawade, Shubhada Maruti et al., "A Web Based Data Extraction Using Hierarchical (DOM) Tree Approach," International Journal for Innovative Research in Science and Technology, Vol.2, No.11, pp.255-257, 2016.
  12. Geng, Hua, Qiang Gao, and Jingui Pan, "Extracting content for news web pages based on DOM," IJCSNS International Journal of Computer Science and Network Security, Vol.7, No.2, pp.124-129, 2007.
  13. Kadam, Vinayak B., and Ganesh K. Pakle, "DEUDS: Data Extraction Using DOM Tree and Selectors," International Journal of Computer Science and Information Technologies, Vol.5, No.2, pp.1403-1410, 2014.
  14. Kuswanto, Heri et al., "Logistic Regression Ensemble for Predicting Customer Defection with Very Large Sample Size," Procedia Computer Science, Vol.72, pp.86-93, 2015. https://doi.org/10.1016/j.procs.2015.12.108
  15. Wang, Hong, Qingsong Xu, and Lifeng Zhou, "Large unbalanced credit scoring using Lasso-logistic regression ensemble," PloS one, Vol.10, No.2, e0117844, 2015. https://doi.org/10.1371/journal.pone.0117844
  16. Chandrashekar, Girish, and Ferat Sahin, "A survey on feature selection methods," Computers & Electrical Engineering, Vol.40, No.1, pp.16-28, 2014. https://doi.org/10.1016/j.compeleceng.2013.11.024
  17. Jurado, Sergio et al., "Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques," Energy, Vol.86, pp.276-291, 2015. https://doi.org/10.1016/j.energy.2015.04.039