DOI QR코드

DOI QR Code

Zeolite X의 양이온에 따른 암모니아 흡착 성능 연구

Ammonia Adsorption Capacity of Zeolite X with Different Cations

  • 박준우 ((주)이앤켐솔루션, 에너지.환경연구소) ;
  • 서영주 ((주)이앤켐솔루션, 에너지.환경연구소) ;
  • 류승형 ((주)이앤켐솔루션, 에너지.환경연구소) ;
  • 김신동 ((주)이앤켐솔루션, 에너지.환경연구소)
  • Park, Joonwoo (Energy & Environment R&D Center in E&Chem Solution Corporation) ;
  • Seo, Youngjoo (Energy & Environment R&D Center in E&Chem Solution Corporation) ;
  • Ryu, Seung Hyeong (Energy & Environment R&D Center in E&Chem Solution Corporation) ;
  • Kim, Shin Dong (Energy & Environment R&D Center in E&Chem Solution Corporation)
  • 투고 : 2017.04.12
  • 심사 : 2017.05.12
  • 발행 : 2017.06.10

초록

Si/Al 몰비율이 1.08~1.20를 가진 제올라이트 X를 수열합성반응을 이용하여 제조한 후, $Mg^{2+}$ 또는 $Cu^{2+}$을 지닌 금속질산염용액으로 이온교환을 하여 이온 교환된 제올라이트 X를 준비하였다. 모든 준비된 제올라이트 X 시료들에 대해 XRD, SEM, EDS를 이용하여 제올라이트의 결정 구조 변화를 확인하였으며, 암모니아 승온 탈착법($NH_3$-TPD)을 통해 시료의 암모니아 흡착능력에 대한 분석을 진행하였다. XRD 결과, 준비된 제올라이트 X는 양이온성분에 상관없이 Faujasite (FAU) 결정상을 유지하였지만, $Mg^{2+}$$Cu^{2+}$로 이온교환된 제올라이트 X에 대한 결정화도는 감소되었다. EDS분석결과, 이온 교환된 제올라이트 X시료들 안에 각각의 양이온이 분포되어 있는 것을 확인할 수 있었다. $NH_3$-TPD 분석결과 $Mg^{2+}$-와 $Cu^{2+}$-제올라이트 X의 암모니아 흡착능은 각각 1.76 mmol/g과 2.35 mmol/g이었으나, $Na^+$-제올라이트 X의 암모니아 흡착능은 3.52 mmol/g ($NH_3/catalyst$)으로 확인되었다. 향후 암모니아를 제거하기 위한 흡착제로서 $Na^+$-제올라이트 X가 활용될 가능성이 높다고 사료된다.

Zeolite X with Si/Al molar ratio = 1.08~1.20 was produced using a hydrothermal synthesis method. Ion-exchanged zeolite X samples were then prepared by using metal nitrate solutions containing $Mg^{2+}$ or $Cu^{2+}$. For all zeolite X samples, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectrometry (EDS) were used to identify the change in crystal structure. The analysis of ammonia adsorption capability of zeolite X samples was conducted through the ammonia temperature-programmed desorption ($NH_3$-TPD) method. From XRD results, the prepared zeolite X samples maintained the Faujasite (FAU) structure regardless of cation contents in zeolite X, but the crystallinity of zeolite X containing $Mg^{2+}$ and $Cu^{2+}$ cations decreased. The distribution of cation contents in zeolite X was identified via EDS analysis. $NH_3$-TPD analysis showed that the $NH_3$ adsorption capacity of $Mg^{2+}$- and $Cu^{2+}$-zeolite X were 1.76 mmol/g and 2.35 mmol/g, respectively while the $Na^+$-zeolite X was 3.52 mmol/g ($NH_3/catalyst$). $Na^+$-zeolite X can thus be utilized as an adsorbent for the removal of ammonia in future.

키워드

참고문헌

  1. C. G. Kim, Removal of ammonium and nitrate nitrogens from wastewater using zeolite. J. Korea Org. Resour. Recycl. Assoc., 24, 59-63 (2016).
  2. X. Yang, X. Wu, H. Hao, and Z. He, Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B, 9, 197-209 (2008). https://doi.org/10.1631/jzus.B0710626
  3. J. B. Seo and K. H. An, Effect of operational parameters on the ammonia stripping, J. Korean Soc. Environ. Eng., 28, 935-939 (2006).
  4. S. Jin and E. Y. Lee, Screening and isolation of ammonia removal microorganism for the improvement of livestock environment, Kor. J. Microbiol. Biotechnol., 37, 408-412 (2009).
  5. D. H. Lee and M. G. Lee, Ammonia nitrogen removal by cation exchange resin, J. Environ. Sci., 11, 263-269 (2002).
  6. M. P. Bernal and J. M. Lopez-Real, Natural zeolites and sepiolite as ammonium and ammonia adsorbent materials, Bioresour. Technol., 43, 27-33 (1993). https://doi.org/10.1016/0960-8524(93)90078-P
  7. S. Jorgensen, Recovery of ammonia from industrial waste water, Water Res., 9, 1187-1191 (1975). https://doi.org/10.1016/0043-1354(75)90119-0
  8. S. E. Jorgensen, O. Libor, K. Lea Graber, and K. Barkacs, Ammonia removal by use of clinoptilolite, Water Res., 10, 213-224 (1976). https://doi.org/10.1016/0043-1354(76)90130-5
  9. A. Hedstrom and L. Rastas Amofah, Adsorption and desorption of ammonium by clinoptilolite adsorbent in municipal wastewater treatment systems, J. Environ. Eng. Sci., 7, 53-61 (2008). https://doi.org/10.1139/S07-029
  10. A. M. Cardoso, M. B. Horn, L. S. Ferret, C. M. N. Azevedo, and M. Pires, Integrated synthesis of zeolites 4A and Na-P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment, J. Hazard. Mater., 287, 69-77 (2015). https://doi.org/10.1016/j.jhazmat.2015.01.042
  11. L. Lin, Z. Lei, L. Wang, X. Liu, Y. Zhang, C. Wan, D.-J. Lee, and J. H. Tay, Adsorption mechanisms of high-levels of ammonium onto natural and NaCl-modified zeolites, Sep. Purif. Technol., 103, 15-20 (2013). https://doi.org/10.1016/j.seppur.2012.10.005
  12. X. Zhang, D. Tang, M. Zhang, and R. Yang, Synthesis of NaX zeolite: Influence of crystallization time, temperature and batch molar ratio $SiO_2$/$Al_2O_3$ on the particulate properties of zeolite crystals, Powder Technol., 235, 322-328 (2013). https://doi.org/10.1016/j.powtec.2012.10.046
  13. C. F. Wang, J. S. Li, L. J. Wang, and X. Y. Sun, Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method, J. Hazard. Mater., 155, 58-64 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.028
  14. M. A. Camblor, A. Corma, and S. Valencia, Characterization of nanocrystalline zeolite Beta, Microporous Mesoporous Mater., 25, 59-74 (1998). https://doi.org/10.1016/S1387-1811(98)00172-3
  15. U. D. Joshi, P. N Joshi, S. S Tamhankar, V. V. Joshi, C. V Rode, and V. P Shiralkar, Effect of nonframework cations and crystallinity on the basicity of NaX zeolites, Appl. Catal. A, 239, 209-220 (2003). https://doi.org/10.1016/S0926-860X(02)00391-5
  16. F. Benaliouche, Y. Boucheffa, P. Ayrault, S. Mignard, and P. Magnoux, $NH_3$-TPD and FTIR spectroscopy of pyridine adsorption studies for characterization of Ag- and Cu-exchanged X zeolites, Microporous Mesoporous Mater., 111, 80-88 (2008). https://doi.org/10.1016/j.micromeso.2007.07.006