DOI QR코드

DOI QR Code

Effects of Multiple Stress Factors Including Iron Supply on Cell Growth and Lipid Accumulation in Marine Microalga Dunaliella tertiolecta

해양 미세조류 Dunaliella tertiolecta에서 철 공급을 포함한 다중스트레스 인자가 세포성장 및 지질생산에 미치는 영향

  • Rizwan, Muhammad (Department of Environmental Engineering and Energy, Myongji University) ;
  • Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University) ;
  • Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
  • Received : 2017.02.28
  • Accepted : 2017.04.11
  • Published : 2017.06.10

Abstract

Changes in the cell growth and lipid accumulation of marine microalga Dunaliella tertiolecta were investigated in response to the combination of different stress factors including the variation of iron supply as a primary stress factor and different options in light irradiation and $CO_2$ supply as a secondary stress factor. High or limited Fe conditions could act as a stress for lipid synthesis. As a secondary stress factor, non-$CO_2$ condition was good for lipid accumulation, but the overall cell growth was sacrificed significantly after a long-time cultivation. Dark condition as a secondary stress factor also favored lipid accumulation and the extent of cell density reduction at the early period in the dark was small compared to other stress conditions. The two-stage cultivation strategy was necessary to maximize lipid production because tendencies of the cell growth and lipid content were not identical under the chosen stress condition. The first stage was for preparing a high cell density under the normal growth-favoring condition and the second stage was the stress condition to induce lipid accumulation in a short time. The short-term (12 h) incubation under the 5X Fe (3.25 mg/L) and dark conditions resulted in the best lipid productivity of 1.44 g/L/d providing 2 g/L inoculum at the second stage.

해양 미세조류 Dunaliella tertiolecta에서 바이오디젤 원료인 지질생산을 위하여 철 함량 변화 및 빛 공급과 $CO_2$ 공급에 의한 다중스트레스 인자의 조합이 세포성장 및 지질함량의 변화에 미치는 영향을 조사하였다. 1차 스트레스 인자로 정상보다 높거나 부족한 철 함량 조건이 지질 합성을 유도할 수 있음을 확인하였다. 2차 스트레스 인자로 빛 또는$CO_2$ 공급이 제한될 때 지질함량이 증가하였지만 오랜 시간 배양할 때 세포성장이 감소하는 단점이 있었다. 이와 같이 스트레스 조건에서 세포의 성장과 지질생산이 서로 다른 경향을 보이면 단일 배양기에서 지질생산성을 높이기 어려우므로, 세포성장과 지질생산을 분리한 2단계 배양 전략을 적용하였다. 1단계 배양에서는 성장 위주의 조건으로 고농도배양을 얻은 후, 2단계에서 지질생산을 유도하는 스트레스 조건을 부여하는 것이다. 암소 조건이 다른 조건에 비해 세포농도 감소폭이 작고 지질함량이 높아졌기 때문에, 세포 2 g/L의 고농도로 접종한 2단계에서 5X 철 농도(3.25 mg/L as Fe) 및 암소 조건을 사용하여 12 h의 짧은 배양을 통하여 1.44 g/L/d의 높은 지질생산성을 얻을 수 있었다.

Keywords

References

  1. G. Mujtaba and K. Lee, Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria, Appl. Chem. Eng., 27(1), 1-9 (2016). https://doi.org/10.14478/ace.2016.1002
  2. M. Siaut, S. Cuine, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylides, Y. Li-Beisson, and G. Peltier, Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves, BMC Biotechnol., 11:7 (2011).
  3. S. Bellou, M. N. Baeshen, A. M. Elazzazy, D. Aggeli, F. Sayegh, and G. Aggelis, Microalgal lipids biochemistry and biotechnological perspectives, Biotechnol. Adv., 32, 1476-1493 (2014). https://doi.org/10.1016/j.biotechadv.2014.10.003
  4. L. D Zhu, Z. H. Li, and E. Hiltunen, Strategies for lipid production improvement in microalgae as a biodiesel feedstock, Biomed. Res. Int., 2016, 8792548 (2016).
  5. G. Kim, G. Mujtaba, M. Rizwan, and K. Lee, Environmental stress strategies for stimulating lipid production from microlagae for biodiesel, Appl. Chem. Eng., 25, 553-558 (2014). https://doi.org/10.14478/ace.2014.1125
  6. G. Mujtaba, W. Choi, C. G. Lee, and K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123, 279-283 (2012). https://doi.org/10.1016/j.biortech.2012.07.057
  7. G. Kim, C. H. Lee, and K. Lee, Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation, Korean J. Chem. Eng., 33, 230-237 (2016). https://doi.org/10.1007/s11814-015-0089-8
  8. Z. Y. Liu, G. C. Wang, and B. C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
  9. W. G. Sunda and S. A. Huntsman, Interrelated influence of iron, light and cell size on marine phytoplankton growth, Nature, 390, 389-392 (1997). https://doi.org/10.1038/37093
  10. A. M. Terauchi, G. Peers, M. C. Kobayashi, K. K. Niyogi, and S. S. Merchant, Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis, Photosyn. Res., 105, 39-49 (2010). https://doi.org/10.1007/s11120-010-9562-8
  11. S. Ruangsomboon, M. Ganmanee, and S. Choochote, Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga Scenedesmus dimorphus KMITL, J. Appl. Phycol., 25, 867-874 (2013). https://doi.org/10.1007/s10811-012-9956-4
  12. O. K. Lee, A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee, Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta, Bioresour. Technol., 132, 197-201 (2013). https://doi.org/10.1016/j.biortech.2013.01.007
  13. M. Takagi and Y. T. Karseno, Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J. Biosci. Bioeng., 101, 223-226 (2006). https://doi.org/10.1263/jbb.101.223
  14. H. Tang, N. Abunasser, M. E. D. Garcia, M. Chen, K. Y. Simon Ng, and S. O. Salley, Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel, Appl. Energy, 88, 3324-3330 (2011). https://doi.org/10.1016/j.apenergy.2010.09.013
  15. M. Rizwan, G. Mujtaba, and K. Lee, Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta, Biotechnol. Bioprocess Eng., 22(1), 68-75 (2017). https://doi.org/10.1007/s12257-016-0628-0
  16. R. R. L. Guillard, Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith and M.H. Chanley (Eds.) Culture of Marine Invertebrate Animals, pp. 26-60, Plenum Press, New York, USA (1975).
  17. E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959). https://doi.org/10.1139/y59-099
  18. C. Yeesang and B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresour. Technol., 102, 3034-3040 (2011). https://doi.org/10.1016/j.biortech.2010.10.013
  19. H. H. A. E. Baky, G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil, Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing $CO_2$ and $Fe^{3+}$ levels for biodiesel production, Bioresour. Technol., 119, 429-432 (2012). https://doi.org/10.1016/j.biortech.2012.05.104
  20. T. M. Mata, R. Almeida, and N. S. Caetano, Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta, Chem. Eng. Trans., 32, 973-978 (2013).
  21. R. Sakthivel, S. Elumalai, and M. Mohommad arif, Microalgae lipid research, past, present: a critical review for biodiesel production, in the future, J. Exp. Sci., 2, 29-49 (2011).
  22. S. Ruangsomboon, Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga Botryococcus braunii KMITL 2, Bioresour. Technol., 109, 261-265 (2012). https://doi.org/10.1016/j.biortech.2011.07.025
  23. I. A. Guschina and J. L. Harwood, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45, 160-186 (2006). https://doi.org/10.1016/j.plipres.2006.01.001
  24. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances, Plant J., 54, 621-639 (2008). https://doi.org/10.1111/j.1365-313X.2008.03492.x
  25. A. Concas, A. Steriti, M. Pisu, and G. Cao, Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors, Bioresour. Technol., 153, 340-350 (2014). https://doi.org/10.1016/j.biortech.2013.11.085