References
- G. Mujtaba and K. Lee, Advanced treatment of wastewater using symbiotic co-culture of microalgae and bacteria, Appl. Chem. Eng., 27(1), 1-9 (2016). https://doi.org/10.14478/ace.2016.1002
- M. Siaut, S. Cuine, C. Cagnon, B. Fessler, M. Nguyen, P. Carrier, A. Beyly, F. Beisson, C. Triantaphylides, Y. Li-Beisson, and G. Peltier, Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves, BMC Biotechnol., 11:7 (2011).
- S. Bellou, M. N. Baeshen, A. M. Elazzazy, D. Aggeli, F. Sayegh, and G. Aggelis, Microalgal lipids biochemistry and biotechnological perspectives, Biotechnol. Adv., 32, 1476-1493 (2014). https://doi.org/10.1016/j.biotechadv.2014.10.003
- L. D Zhu, Z. H. Li, and E. Hiltunen, Strategies for lipid production improvement in microalgae as a biodiesel feedstock, Biomed. Res. Int., 2016, 8792548 (2016).
- G. Kim, G. Mujtaba, M. Rizwan, and K. Lee, Environmental stress strategies for stimulating lipid production from microlagae for biodiesel, Appl. Chem. Eng., 25, 553-558 (2014). https://doi.org/10.14478/ace.2014.1125
- G. Mujtaba, W. Choi, C. G. Lee, and K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123, 279-283 (2012). https://doi.org/10.1016/j.biortech.2012.07.057
- G. Kim, C. H. Lee, and K. Lee, Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation, Korean J. Chem. Eng., 33, 230-237 (2016). https://doi.org/10.1007/s11814-015-0089-8
- Z. Y. Liu, G. C. Wang, and B. C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). https://doi.org/10.1016/j.biortech.2007.09.073
- W. G. Sunda and S. A. Huntsman, Interrelated influence of iron, light and cell size on marine phytoplankton growth, Nature, 390, 389-392 (1997). https://doi.org/10.1038/37093
- A. M. Terauchi, G. Peers, M. C. Kobayashi, K. K. Niyogi, and S. S. Merchant, Trophic status of Chlamydomonas reinhardtii influences the impact of iron deficiency on photosynthesis, Photosyn. Res., 105, 39-49 (2010). https://doi.org/10.1007/s11120-010-9562-8
- S. Ruangsomboon, M. Ganmanee, and S. Choochote, Effects of different nitrogen, phosphorus, and iron concentrations and salinity on lipid production in newly isolated strain of the tropical green microalga Scenedesmus dimorphus KMITL, J. Appl. Phycol., 25, 867-874 (2013). https://doi.org/10.1007/s10811-012-9956-4
- O. K. Lee, A. L. Kim, D. H. Seong, C. G. Lee, Y. T. Jung, J. W. Lee, and E. Y. Lee, Chemoenzymatic saccharification and bioethanol fermentation of lipid-extracted residual biomass of the microalga Dunaliella tertiolecta, Bioresour. Technol., 132, 197-201 (2013). https://doi.org/10.1016/j.biortech.2013.01.007
- M. Takagi and Y. T. Karseno, Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J. Biosci. Bioeng., 101, 223-226 (2006). https://doi.org/10.1263/jbb.101.223
- H. Tang, N. Abunasser, M. E. D. Garcia, M. Chen, K. Y. Simon Ng, and S. O. Salley, Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel, Appl. Energy, 88, 3324-3330 (2011). https://doi.org/10.1016/j.apenergy.2010.09.013
- M. Rizwan, G. Mujtaba, and K. Lee, Effects of iron sources on the growth and lipid/carbohydrate production of marine microalga Dunaliella tertiolecta, Biotechnol. Bioprocess Eng., 22(1), 68-75 (2017). https://doi.org/10.1007/s12257-016-0628-0
- R. R. L. Guillard, Culture of phytoplankton for feeding marine invertebrates. In: W.L. Smith and M.H. Chanley (Eds.) Culture of Marine Invertebrate Animals, pp. 26-60, Plenum Press, New York, USA (1975).
- E. G. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol., 37, 911-917 (1959). https://doi.org/10.1139/y59-099
- C. Yeesang and B. Cheirsilp, Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand, Bioresour. Technol., 102, 3034-3040 (2011). https://doi.org/10.1016/j.biortech.2010.10.013
-
H. H. A. E. Baky, G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil, Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing
$CO_2$ and$Fe^{3+}$ levels for biodiesel production, Bioresour. Technol., 119, 429-432 (2012). https://doi.org/10.1016/j.biortech.2012.05.104 - T. M. Mata, R. Almeida, and N. S. Caetano, Effect of the culture nutrients on the biomass and lipid productivities of microalgae Dunaliella tertiolecta, Chem. Eng. Trans., 32, 973-978 (2013).
- R. Sakthivel, S. Elumalai, and M. Mohommad arif, Microalgae lipid research, past, present: a critical review for biodiesel production, in the future, J. Exp. Sci., 2, 29-49 (2011).
- S. Ruangsomboon, Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga Botryococcus braunii KMITL 2, Bioresour. Technol., 109, 261-265 (2012). https://doi.org/10.1016/j.biortech.2011.07.025
- I. A. Guschina and J. L. Harwood, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45, 160-186 (2006). https://doi.org/10.1016/j.plipres.2006.01.001
- Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances, Plant J., 54, 621-639 (2008). https://doi.org/10.1111/j.1365-313X.2008.03492.x
- A. Concas, A. Steriti, M. Pisu, and G. Cao, Comprehensive modeling and investigation of the effect of iron on the growth rate and lipid accumulation of Chlorella vulgaris cultured in batch photobioreactors, Bioresour. Technol., 153, 340-350 (2014). https://doi.org/10.1016/j.biortech.2013.11.085