DOI QR코드

DOI QR Code

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors

  • Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lim, An Suk (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lee, Kitack (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Lee, Moo Joon (Department of Marine Biotechnology, Anyang University) ;
  • Seong, Kyeong Ah (Department of Marine Biotechnology, Kunsan National University) ;
  • Kang, Nam Seon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Jang, Se Hyeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lee, Kyung Ha (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Lee, Sung Yeon (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, Mi Ok (School of Environmental Science and Engineering, Pohang University of Science and Technology) ;
  • Kim, Ji Hye (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kwon, Ji Eun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University) ;
  • Kim, Jae Seong (Water and Eco-Bio Corporation, Kunsan National University) ;
  • Yih, Wonho (Department of Marine Biotechnology, Kunsan National University) ;
  • Shin, Kyoungsoon (Korea Institute of Ocean Science & Technology) ;
  • Jang, Poong Kook (Korea Institute of Ocean Science & Technology) ;
  • Ryu, Joo-Hyung (Korea Institute of Ocean Science & Technology) ;
  • Kim, Sung Young (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Jae Yeon (Advanced Institutes of Convergence Technology) ;
  • Kim, Kwang Young (Department of Oceanography, Chonnam National University)
  • Received : 2017.03.15
  • Accepted : 2017.05.30
  • Published : 2017.06.15

Abstract

The ichthyotoxic Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in the waters of Korea and other countries. Predicting outbreak of C. polykrikoides red tides 1-2 weeks in advance is a critical step in minimizing losses. In the South Sea of Korea, large C. polykrikoides red tide patches have often been recorded offshore and transported to nearshore waters. To explore the processes of offshore C. polykrikoides red tides, temporal variations in 3-dimensional (3-D) distributions of red tide organisms and environmental parameters were investigated by analyzing 4,432 water samples collected from 2-5 depths of 60 stations in the South Sea, Korea 16 times from May to Nov, 2014. In the study area, the vegetative cells of C. polykrikoides were found as early as May 7, but C. polykrikoides red tide patches were observed from Aug 21 until Oct 9. Cochlodinium red tides occurred in both inner and outer stations. Prior to the occurrence of large C. polykrikoides red tides, the phototrophic dinoflagellates Prorocentrum donghaiense (Jun 12 to Jul 11), Ceratium furca (Jul 11 to Aug 21), and Alexandrium fraterculus (Aug 21) formed red tides in sequence, and diatom red tides formed 2-3 times without a certain distinct pattern. The temperature for the optimal growth of these four red tide dinoflagellates is known to be similar. Thus, the sequence of the maximum growth rates of P. donghaiense > C. furca > A. fraterculus > C. polykrikoides may be partially responsible for this sequence of red tides in the inner stations following high nutrients input in the surface waters because of heavy rains. Furthermore, Cochlodinium red tides formed and persisted at the outer stations when $NO_3$ concentrations of the surface waters were < $2{\mu}M$ and thermocline depths were >20 m with the retreat of deep cold waters, and the abundance of the competing red-tide species was relatively low. The sequence of the maximum swimming speeds and thus potential reachable depths of C. polykrikoides > A. fraterculus > C. furca > P. donghaiense may be responsible for the large C. polykrikoides red tides after the small blooms of the other dinoflagellates. Thus, C. polykrikoides is likely to outgrow over the competitors at the outer stations by descending to depths >20 m and taking nutrients up from deep cold waters. Thus, to predict the process of Cochlodinium red tides in the study area, temporal variations in 3-D distributions of red tide organisms and environmental parameters showing major nutrient sources, formation and depth of thermoclines, intrusion and retreat of deep cold waters, and the abundance of competing red tide species should be well understood.

Keywords

References

  1. Al-Azri, A. R., Al-Hashimi, K. A., Al-Habsi, H., Al-Azri, N. & Al-Khusaibi, S. 2015. Abundance of harmful algal blooms in the coastal waters of Oman: 2006-2011. Aquat. Ecosyst. Health Manag. 18:269-281. https://doi.org/10.1080/14634988.2015.1027131
  2. Al-Azri, A. R., Piontkovski, S. A., Al-Hashimi, K. A., Goes, J. I., Gomes, H. R. & Glibert, P. M. 2013. Mesoscale and nutrient conditions associated with the massive 2008 Cochlodinium polykrikoides bloom in the Sea of Oman/Arabian Gulf. Estuar. Coast. 37:325-338.
  3. Al-Hashmi, K. A., Smith, S. L., Claereboudt, M., Piontkovski, S. A. & Al-Azri, A. 2015. Dynamics of potentially harmful phytoplankton in a semi-enclosed bay in the Sea of Oman. Bull. Mar. Sci. 91:141-166. https://doi.org/10.5343/bms.2014.1041
  4. Alonso-Rodriguez, R. & Ochoa, J. L. 2004. Hydrology of winter-spring "red-tides" in Bahia de Mazatlan, Sinaloa, Mexico. Harmful Algae 3:163-171. https://doi.org/10.1016/j.hal.2003.10.002
  5. Anderson, D. M. 1995. ECOHAB: the ecology and oceanography of harmful algal blooms: a national research agenda. Woods Hole Oceanographic Institute, Woods Hole, MA, 66 pp.
  6. Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E. & Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10-35. https://doi.org/10.1016/j.hal.2011.10.012
  7. Anderson, D. M., Glibert, P. M. & Burkholder, J. M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704-726. https://doi.org/10.1007/BF02804901
  8. Anton, A., Teoh, P. L., Mohd-Shaleh, S. R. & Mohammad-Noor, N. 2008. First occurrence of Cochlodinium blooms in Sabah, Malaysia. Harmful Algae 7:331-336. https://doi.org/10.1016/j.hal.2007.12.013
  9. Azanza, R. V., David, L. T., Borja, R. T., Baula, I. U. & Fukuyo, Y. 2008. An extensive Cochlodinium bloom along the western coast of Palawan, Philippines. Harmful Algae 7:324-330. https://doi.org/10.1016/j.hal.2007.12.011
  10. Baek, S. H., Shimode, S., Han, M. -S. & Kikuchi, T. 2008a. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of nutrients. Harmful Algae 7:729-739. https://doi.org/10.1016/j.hal.2008.02.007
  11. Baek, S. H., Shimode, S. & Kikuchi, T. 2008b. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of temperature, light intensity and photoperiod. Harmful Algae 7:163-173. https://doi.org/10.1016/j.hal.2007.06.006
  12. Baek, S. H., Shimode, S., Shin, K., Han, M. -S. & Kikichi, T. 2009. Growth of dinoflagellates, Ceratium furca and Ceratium fusus in Sagami Bay, Japan: the role of vertical migration and cell division. Harmful Algae 8:843-856. https://doi.org/10.1016/j.hal.2009.04.001
  13. Eaton, A. D., Clesceri, L. S., Greenberg, A. E. & Franson, M. A. H. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association (APHA), Washington, DC, 43 pp.
  14. Eppley, R. W. & Harrison, W. G. 1975. Physiological ecology of Gonyaulax polyedrum, a red tide water dinoflagellate of southern California. In Locicero, V. R. (Ed.) Prec. 1st Int. Conf. Toxic Dinoflagellate Blooms, Massachusetts Science and Technology Foundation, Wakefield, MA, pp. 11-22.
  15. Fatemi, S. M. R., Nabavi, S. M. B., Vosoghi, G., Fallahi, M. & Mohammadi, M. 2012. The relation between environmental parameters of Hormuzgan coastline in Persian Gulf and occurrence of the first harmful algal bloom of Cochlodinium polykrikoides (Gymnodiniaceae). Iran. J. Fish. Sci. 11:475-489.
  16. Franks, P. J. S. 1997a. Models of harmful algal blooms. Limnol. Oceanogr. 42:1273-1282. https://doi.org/10.4319/lo.1997.42.5_part_2.1273
  17. Franks, P. J. S. 1997b. Spatial patterns in dense algal blooms. Limnol. Oceanogr. 42:1297-1305. https://doi.org/10.4319/lo.1997.42.5_part_2.1297
  18. Franks, P. J. S. & Anderson, D. M. 1992. Alongshore transport of a toxic phytoplankton bloom in a buoyancy current: Alexandrium tamarense in the Gulf of Maine. Mar. Biol. 112:153-164. https://doi.org/10.1007/BF00349739
  19. Fu, F. X., Tatters, A. O. & Hutchins, D. A. 2012. Global change and the future of harmful algal blooms in the ocean. Mar. Ecol. Prog. Ser. 470:207-233. https://doi.org/10.3354/meps10047
  20. Fukuyo, Y., Imai, I., Kodama, M. & Tamai, K. 2002. Red tides and other harmful algal blooms in Japan. In Tayler, F. J. R. & Trainer, V. L. (Eds.) Harmful Algal Blooms in the PICES Region of the North Pacific. PICES Sci. Rep. No. 23. North Pacific Marine Science Organization (PICES) Institute of Ocean Sciences, Sidney, BC, pp. 7-20.
  21. Garate-Lizarraga, I., Lopez-Cortes, D. J., Bustillo-Guzman, J. J. & Hemandez-Sandoval, F. 2004. Blooms of Cochlodinium polykrikoides (Gymnodiniaceae) in the Gulf of California, Mexico. Rev. Biol. Trop. 52(Suppl. 1):51-58.
  22. Glibert, P. M., Anderson, D. M., Gentein, P., Graneli, E. & Sellner, K. G. 2005. The global, complex phenomena of harmful algal blooms. Oceanography 18:136-147.
  23. Gobler, C. J., Berry, D. L., Anderson, O. R., Burson, A., Koch, F., Rodgers, B. S., Moore, L. K., Goleski, J. A., Allam, B., Bowser, P., Tang, Y. & Nuzzi, R. 2008. Characterization, dynamics, and ecological impacts of harmful Cochlodinium polykrikoides blooms on eastern Long Island, NY, USA. Harmful Algae 7:293-307. https://doi.org/10.1016/j.hal.2007.12.006
  24. Gobler, C. J., Burson, A., Koch, F., Tang, Y. & Mulholland, M. R. 2012. The role of nitrogenous nutrients in the occurrence of harmful algal blooms caused by Cochlodinium polykrikoides in New York estuaries (USA). Harmful Algae 17:64-74. https://doi.org/10.1016/j.hal.2012.03.001
  25. Hamzehei, S., Bidokhti, A. A., Mortazavi, M. S. & Gheiby, A. 2013. Red tide monitoring in the Persian Gulf and Gulf of Oman using MODIS sensor data. Tech. J. Eng. Appl. Sci. 3:1100-1107.
  26. Han, I. -S., Jang, L. -H., Suh, Y. -S. & Seong, K. -T. 2008. Relationship between temperature distributions and outbreaks of harmful algal blooms in Korean waters. J. Fish. Sci. Technol. 11:50-60.
  27. Holmes, R. W., Williams, P. M. & Eppley, R. W. 1967. Red water in La Jolla Bay, 1964-1966. Limnol. Oceanogr. 12:503-512. https://doi.org/10.4319/lo.1967.12.3.0503
  28. Horner, R. A., Garrison, D. L. & Plumley, F. G. 1997. Harmful algal blooms and red tide problems on the U.S. west coast. Limnol. Oceanogr. 42:1076-1088. https://doi.org/10.4319/lo.1997.42.5_part_2.1076
  29. Hu, Z., Duan, S., Xu, N. & Mulholland, M. R. 2014. Growth and nitrogen uptake kinetics in cultured Prorocentrum donghaiense. PLoS One 9:e94030. https://doi.org/10.1371/journal.pone.0094030
  30. Imai, I., Yamaguchi, M. & Hori, Y. 2006. Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res. 1:71-84. https://doi.org/10.3800/pbr.1.71
  31. Iwataki, M., Kawami, H., Mizushima, K., Mikulski, C. M., Doucette, G. J., Relox, J. R. Jr., Anton, A., Fukuyo, Y. & Matsuoka, K. 2008. Phylogenetic relationships in the harmful dinoflagellate Cochlodinium polykrikoides (Gymnodiniales, Dinophyceae) inferred from LSU rDNA sequences. Harmful Algae 7:271-277. https://doi.org/10.1016/j.hal.2007.12.003
  32. Jeong, H. J., Kim, H. R., Kim, K. I., Kim, K. Y., Park, K. H., Kim, S. T., Yoo, Y. D., Song, J. Y., Kim, J. S., Seong, K. A., Yih, W. H., Pae, S. J., Lee, C. H., Huh, M. D. & Lee, S. H. 2002. NaOCl produced by electrolysis of natural seawater as a potential method to control marine red-tide dinoflagellate. Phycologia 41:643-656. https://doi.org/10.2216/i0031-8884-41-6-643.1
  33. Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Song, J. Y., Kim, T. H., Seong, K. A., Kang, N. S., Kim, M. S., Kim, J. H., Kim, S., Ryu, J., Lee, H. M. & Yih, W. H. 2008. Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7:368-377. https://doi.org/10.1016/j.hal.2007.12.004
  34. Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115. https://doi.org/10.1016/j.hal.2015.06.004
  35. Jeong, H. J., Ok, J. H., Lim, A. S., Kwon, J. E., Kim, S. J. & Lee, S. Y. 2016. Mixotrophy in the phototrophic dinoflagellate Takayama helix (family Kareniaceae): predator of diverse toxic and harmful dinoflagellates. Harmful Algae 60:92-106. https://doi.org/10.1016/j.hal.2016.10.008
  36. Jeong, H. J., Shim, J. H., Kim, J. S., Park, J. Y., Lee, C. W. & Lee, Y. 1999. Feeding by the mixotrophic thecate dinoflagellate Fragilidium cf. mexicanum on red-tide and toxic dinoflagellate. Mar. Ecol. Prog. Ser. 176:263-277. https://doi.org/10.3354/meps176263
  37. Jeong, H. J., Yoo, Y. D., Kim, J. S., Kim, T. H., Kim, J. H., Kang, N. S. & Yih, W. 2004. Mixotrophy in the phototrophic harmful alga Cochlodinium polykrikoides (Dinophycean): prey species, the effects of prey concentration and grazing impact. J. Eukaryot. Microbiol. 51:563-569. https://doi.org/10.1111/j.1550-7408.2004.tb00292.x
  38. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  39. Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88. https://doi.org/10.1016/j.hal.2013.10.008
  40. Kaneda, A., Takeoka, H., Nagaura, E. & Koizumi, Y. 2002. Periodic intrusion of cold water from the Pacific Ocean into the bottom layer of the Bungo Channel in Japan. J. Oceanogr. 58:547-556. https://doi.org/10.1023/A:1021262609923
  41. Kim, D. -I., Matsuyama, Y., Nagasoe, S., Yamaguchi, M., Yoon, Y. -H., Oshima, Y., Imada, N. & Honjo, T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinidum polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26:61-66. https://doi.org/10.1093/plankt/fbh001
  42. Kim, H. C., Lee, C. K., Lee, S. G., Kim, H. G. & Park, C. K. 2001. Physico-chemical factors on the growth of Cochlodinium polykrikoides and nutrient utilization. J. Korean Fish. Soc. 34:445-456.
  43. Kim, Y. S., Jeong, C. S., Seong, G. T., Han, I. S. & Lee, Y. S. 2010. Diurnal vertical migration of Cochlodinium polykrikoides during the red tide in Korean coastal sea waters. J. Environ. Biol. 31:687-693.
  44. Kudela, R. M. & Gobler, C. J. 2012. Harmful dinoflagellate blooms caused by Cochlodinium sp.: global expansion and ecological strategies facilitating bloom formation. Harmful Algae 14:71-86. https://doi.org/10.1016/j.hal.2011.10.015
  45. Kudela, R. M., Ryan, J. P., Blakely, M. D., Lane, J. Q. & Peterson, T. D. 2008. Linking the physiology and ecology of Cochlodinium to better understand harmful algal bloom events: a comparative approach. Harmful Algae 7:278-292. https://doi.org/10.1016/j.hal.2007.12.016
  46. Lee, C. -K., Park, T. -G., Park, Y. -T. & Lim, W. -A. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30(Suppl. 1):S3-S14. https://doi.org/10.1016/j.hal.2013.10.002
  47. Lee, C., Park, Y., Park, T. & Suh, Y. 2014a. Economic losses to the aquaculture industry by harmful algal blooms in Korea since 2001. PICES Sci. Rep. 47:35-40.
  48. Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J. Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81. https://doi.org/10.1016/j.hal.2016.09.008
  49. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014b. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
  50. Lee, M., Kim, B., Kwon, Y. & Kim, J. 2009. Characteristics of the marine environment and algal blooms in Gamak Bay. Fish. Sci. 75:401-411. https://doi.org/10.1007/s12562-009-0056-6
  51. Lim, A. S., Jeong, H. J., Jang, T. Y., Jang, S. H. & Franks, P. J. S. 2014. Inhibition of growth rate and swimming speed of the harmful dinoflagellate Cochlodinium polykrikoides by diatoms: implications for red tide formation. Harmful Algae 37:53-61. https://doi.org/10.1016/j.hal.2014.05.003
  52. Lim, A. S., Jeong, H. J., Jang, T. Y., Kang, N. S., Jang, S. H. & Lee, M. J. 2015. Differential effects of typhoons on ichthyotoxic Cochlodinium polykrikoides red tides in the South Sea of Korea during 2012-2014. Harmful Algae 45:26-32. https://doi.org/10.1016/j.hal.2015.04.001
  53. Lim, A. S., Jeong, H. J., Kim, J. H. & Lee, S. Y. 2017. Control of ichthyotoxic Cochlodinium polykrikoides using the mixotrophic dinoflagellate Alexandrium pohangense: a potential effective sustainable method. Harmful Algae 63:109-118. https://doi.org/10.1016/j.hal.2017.02.001
  54. Lim, P. -T., Leaw, C. -P., Kaga, S., Sekiguchi, K. & Ogata, T. 2007a. Growth responses of five non toxic Alexandrium species (dinophyceae) to temperature and salinity. Mar. Res. Indonesia 32:189-195.
  55. Lim, W. -A., Lee, Y. -S. & Lee, S. -G. 2008. Characteristics of environmental factors related to outbreak and decline of Cochlodinium polykrikoides bloom in the southeast coastal waters of Korea, 2007. J. Korean Soc. Oceanogr. 13:325-332 (in Korean with English abstract).
  56. Lim, W. -A., Lee, Y. -S., Lee, S. -G. & Lee, J. -Y. 2007b. Distribution and community structure of phytoplankton in the southeast coastal waters during Summer 2006. J. Korean Soc. Oceanogr. 12:370-379 (in Korean with English abstract).
  57. Lim, W. -A., Lee, Y. -S. & Park, J. -G. 2009. Characteristics of Cochlodinium polykrikoides bloom in southeast coastal waters of Korea, 2008. J. Korean Soc. Oceanogr. 14:155-162 (in Korean with English abstract).
  58. Menden-Deuer, S. & Montalbano, A. L. 2015. Bloom formation potential in the harmful dinoflagellate Akashiwo sanguinea: clues from movement behaviors and growth characteristics. Harmful Algae 47:75-85. https://doi.org/10.1016/j.hal.2015.06.001
  59. Mohammad-Noor, N., Weliyadi, E., Aung, T., Adam, A. & Hanan, D. S. M. 2014. Effects of meteorological conditions on the occurrence of Cochlodinium polykrikoides and Pyrodinium bahamense var. compressum in coastal waters of Kota Kinabalu, Sabah, Malaysia. Sains Malaysiana 43:21-29.
  60. Morse, R. E., Mulholland, M. R., Hunley, W. S., Fentress, S., Wiggins, M. & Blanco-Garcia, J. L. 2013. Controls on the initiation and development of blooms of the dinoflagellate Cochlodinium polykrikoides Margalef in lower Chesapeake Bay and its tributaries. Harmful Algae 28:71-82. https://doi.org/10.1016/j.hal.2013.05.013
  61. Morse, R. E., Shen, J., Blanco-Garcia, J. L., Hunley, W. S., Fentress, S., Wiggins, M. & Mulholland, M. R. 2011. Environmental and physical controls on the formation and transport of blooms of the dinoflagellate Cochlodinium polykrikoides Margalef in the lower Chesapeake Bay and its tributaries. Estuar. Coast. 34:1006-1025. https://doi.org/10.1007/s12237-011-9398-2
  62. Mulholland, M. R., Morse, R. E., Boneillo, G. E., Bernhardt, P. W., Filippino, K. C., Procise, L. A., Blanco-Garcia, J. L., Marshall, H. G., Egerton, T. A., Hunley, W. S., Moore, K. A., Berry, D. L. & Gobler, C. J. 2009. Understanding causes and impacts of the dinoflagellate, Cochlodinium polykrikoides, blooms in the Chesapeake Bay. Estuar. Coast. 32:734-747. https://doi.org/10.1007/s12237-009-9169-5
  63. National Fisheries Research and Development Institute (NFRDI). 2014. Harmful algal blooms in Korean nearshore waters in 2013. Research report of National Fisheries Research and Development Institute. National Fisheries Research and Development Institute, Incheon, 173 pp. (in Korean).
  64. Nuzzi, R. 2004. Cochlodinium polykrikoides in the Peconic Estuary. Harmful Algae News 27:10-11.
  65. Onitsuka, G., Miyahara, K., Hirose, N., Watanabe, S., Semura, H., Hori, R., Nishkawa, T., Miyaji, K. & Yamaguchi, M. 2010. Large-scale transport of Cochlodinium polykrikoides blooms by the Tsushima Warm Current in the southwest Sea of Japan. Harmful Algae 9:390-397. https://doi.org/10.1016/j.hal.2010.01.006
  66. Park, B. S., Wang, P., Kim, J. H., Kim, J. -H., Gobler, C. J. & Han, M. -S. 2014. Resolving the intra-specific succession within Cochlodinium polykrikoides populations in southern Korean coastal waters via use of quantitative PCR assays. Harmful Algae 37:133-141. https://doi.org/10.1016/j.hal.2014.04.019
  67. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013a. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40. https://doi.org/10.1016/j.hal.2013.10.004
  68. Park, T. G., Lim, W. A., Park, Y. T., Lee, C. K. & Jeong, H. J. 2013b. Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30(Suppl. 1):S131-S143. https://doi.org/10.1016/j.hal.2013.10.012
  69. Qasim, S. Z., Bhattathiri, P. M. A. & Devassy, V. P. 1973. Growth kinetics and nutrient requirements of two tropical marine phytoplankters. Mar. Biol. 21:299-304. https://doi.org/10.1007/BF00381086
  70. Richlen, M. L., Morton, S. L., Jamali, E. A., Rajan, A. & Anderson, D. M. 2010. The catastrophic 2008-2009 red tides in the Arabian Gulf region, with observations on the identification and phylogeny of the fish-killing dinoflagellate Cochlodinium polykrikoides. Harmful Algae 9:163-172. https://doi.org/10.1016/j.hal.2009.08.013
  71. Seong, K. A., Jeong, H. J., Kim, S., Kim, G. H. & Kang, J. H. 2006. Bacterivory by co-occurring red-tide algae, heterotrophic nanoflagellates, and ciliates. Mar. Ecol. Prog. Ser. 322:85-97. https://doi.org/10.3354/meps322085
  72. Smayda, T. J. 1990. Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Graneli, E., Sundstrom, B., Edler, L. & Anderson, D. M. (Eds.) Toxic Marine Phytoplankton. Elsevier Publishers B.V., Amsterdam, pp. 29-40.
  73. Smayda, T. J. 2010. Adaptations and selection of harmful and other dinoflagellate species in upwelling systems. 2. Motility and migratory behaviour. Prog. Oceanogr. 85:71-91. https://doi.org/10.1016/j.pocean.2010.02.005
  74. Sordo, I., Barton, E. D., Cotos, J. M. & Pazos, Y. 2001. An inshore poleward current in the NW of the Iberian Peninsula detected from satellite images, and its relation with G. catenatum and D. acuminata blooms in the Galician Rias. Estuar. Coast. Shelf Sci. 53:787-799. https://doi.org/10.1006/ecss.2000.0788
  75. Tang, Y. Z. & Gobler, C. J. 2010. Allelopathic effects of Cochlodinium polykrikoides isolates and blooms from the estuaries of Long Island, New York, on co-occurring phytoplankton. Mar. Ecol. Prog. Ser. 406:19-31. https://doi.org/10.3354/meps08537
  76. Tomas, C. R. & Smayda, T. J. 2008. Red tide blooms of Cochlodinium polykrikoides in a coastal cove. Harmful Algae 7:308-317. https://doi.org/10.1016/j.hal.2007.12.005
  77. Vargas-Montero, M., Freer, E., Jimenez-Montealegre, R. & Guzman, J. C. 2006. Occurrence and predominance of the fish killer Cochlodinium polykrikoides on the Pacific coast of Costa Rica. Afr. J. Mar. Sci. 28:215-217. https://doi.org/10.2989/18142320609504150
  78. Welch, P. S. 1948. Limnological methods. Blaikston Co., Philadelphia, PA, 381 pp.
  79. Whyte, J. N. C., Haigh, N., Ginther, N. G. & Keddy, L. J. 2001. First record of blooms of Cochlodinium sp. (Gymnodiniales, Dinophyceae) causing mortality to aquacultured salmon on the west coast of Canada. Phycologia 40:298-304. https://doi.org/10.2216/i0031-8884-40-3-298.1
  80. Xu, N., Duan, S., Li, A., Zhang, C., Cai, Z. & Hu, Z. 2010. Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae 9:13-17. https://doi.org/10.1016/j.hal.2009.06.002
  81. Yamasaki, Y., Nagasoe, S., Matsubara, T., Shikata, T., Shimasaki, Y., Oshima, Y. & Honjo, T. 2007. Growth inhibition and formation of morphologically abnormal cells of Akashiwo sanguinea (Hirasaka) G. Hansen et Moestrup by cell contact with Cochlodinium polykrikoides Margalef. Mar. Biol. 152:157-163. https://doi.org/10.1007/s00227-007-0671-7
  82. Yamatogi, T., Sakaguchi, M., Iwataki, M. & Matsuoka, K. 2006. Effects of temperature and salinity on the growth of four harmful red tide flagellates occurring in Isahaya Bay in Ariake Sound, Japan. Nippon Suisan Gakkaishi 72:160-168. https://doi.org/10.2331/suisan.72.160
  83. Yamatogi, T., Sakaguti, M., Takagi, N., Iwataki, M. & Matsuoka, K. 2005. Effects of temperature, salinity and light intensity on the growth of a harmful dinoflagellate Cochlodinium polykrikoides Margalef occurring in coastal waters of west Kyushu, Japan. Bull. Plankton Soc. Jpn. 52:4-10.
  84. Yan, T., Zhou, M. -J. & Zou, J. -Z. 2002. A national report on harmful algal blooms in China. In Tayler, F. J. R. & Trainer, V. L. (Eds.) Harmful Algal Blooms in the PICES Region of the North Pacific. PICES Sci. Rep. No. 23. North Pacific Marine Science Organization (PICES) Institute of Ocean Sciences, Sidney, BC, pp. 21-38.
  85. Yoon, D. -Y. & Choi, H. -W. 2012. Development of algorithms for extracting thermocline parameters in the South Sea of Korea. Ocean Polar Res. 34:265-273 (in Korean with English abstract, tables, and figures). https://doi.org/10.4217/OPR.2012.34.2.265

Cited by

  1. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms vol.32, pp.3, 2017, https://doi.org/10.4490/algae.2017.32.8.25
  2. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: III. Metazooplankton and their grazing impacts on red-tide organisms and heterotrophic protists vol.32, pp.4, 2017, https://doi.org/10.4490/algae.2017.32.11.28
  3. and Common Heterotrophic Protists vol.65, pp.5, 2018, https://doi.org/10.1111/jeu.12506
  4. Morphological and genetic characterization and the nationwide distribution of the phototrophic dinoflagellate Scrippsiella lachrymosa in the Korean waters vol.33, pp.1, 2018, https://doi.org/10.4490/algae.2018.33.3.4
  5. Mapping distribution of cysts of recent dinoflagellate and Cochlodinium polykrikoides using next-generation sequencing and morphological approaches in South Sea, Korea vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-25345-4
  6. GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지 vol.34, pp.2, 2018, https://doi.org/10.7780/kjrs.2018.34.2.2.6
  7. Synergistic Effect of Multi-Sensor Data on the Detection of Margalefidinium polykrikoides in the South Sea of Korea vol.11, pp.1, 2017, https://doi.org/10.3390/rs11010036
  8. First report of the photosynthetic dinoflagellate Heterocapsa minima in the Pacific Ocean: morphological and genetic characterizations and the nationwide distribution in Korea vol.34, pp.1, 2017, https://doi.org/10.4490/algae.2019.34.2.28
  9. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.5.25
  10. Feeding by common heterotrophic protists on the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) compared to that of other suessioid dinoflagellates vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.5.29
  11. Effects of light intensity and temperature on growth and ingestion rates of the mixotrophic dinoflagellate Alexandrium pohangense vol.166, pp.7, 2017, https://doi.org/10.1007/s00227-019-3546-9
  12. De novo transcriptome of the newly described phototrophic dinoflagellate Yihiella yeosuensis: comparison between vegetative cells and cysts vol.166, pp.8, 2019, https://doi.org/10.1007/s00227-019-3554-9
  13. Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions vol.34, pp.3, 2017, https://doi.org/10.4490/algae.2019.34.8.28
  14. Five Alexandrium species lacking mixotrophic ability vol.34, pp.4, 2019, https://doi.org/10.4490/algae.2019.34.11.21
  15. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations vol.35, pp.1, 2017, https://doi.org/10.4490/algae.2020.35.2.24
  16. Feeding by common heterotrophic protist predators on seven Prorocentrum species vol.35, pp.1, 2017, https://doi.org/10.4490/algae.2020.35.2.28
  17. 독도 연안 식물플랑크톤의 계절적 분포 특성과 환경요인: 2018년과 2019년 비교 vol.38, pp.1, 2017, https://doi.org/10.11626/kjeb.2020.38.1.047
  18. Harmful Algal Blooms Associated with Volcanic Eruptions in Indonesia and Philippines for Korean Fishery Damage vol.11, pp.5, 2017, https://doi.org/10.4236/abb.2020.115017
  19. Effects of temperature on the growth and ingestion rates of the newly described mixotrophic dinoflagellate Yihiella yeosuensis and its two optimal prey species vol.35, pp.3, 2017, https://doi.org/10.4490/algae.2020.35.8.20
  20. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters vol.35, pp.3, 2020, https://doi.org/10.4490/algae.2020.35.8.25
  21. Semi-continuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production vol.35, pp.3, 2017, https://doi.org/10.4490/algae.2020.35.9.2
  22. Feeding by the newly described heterotrophic dinoflagellate Gyrodinium jinhaense: comparison with G. dominans and G. moestrupii vol.167, pp.10, 2017, https://doi.org/10.1007/s00227-020-03769-9
  23. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020 vol.36, pp.1, 2017, https://doi.org/10.4490/algae.2021.36.2.22
  24. Effect of marine heatwaves on bloom formation of the harmful dinoflagellate Cochlodinium polykrikoides: Two sides of the same coin? vol.104, pp.None, 2017, https://doi.org/10.1016/j.hal.2021.102029
  25. High Spatial-Resolution Red Tide Detection in the Southern Coast of Korea Using U-Net from PlanetScope Imagery vol.21, pp.13, 2021, https://doi.org/10.3390/s21134447