DOI QR코드

DOI QR Code

A Comparative Study of Hataedock versus Probiotics on Immunomodulating Effect in Intestinal Mucosa

황련감초 하태독법과 프로바이오틱스의 대장점막 내 면역조절 효과 비교연구

  • Ahn, Sang Hyun (Department of Anatomy, College of Korean Medicine, Semyung University) ;
  • Cha, Ho Yeol (Department of Korean Pediatrics, Pusan National University Hospital) ;
  • Kim, Ki Bong (Department of Korean Pediatrics, Pusan National University Hospital)
  • 안상현 (세명대학교 한의과대학 해부학교실) ;
  • 차호열 (부산대학교한방병원 한방소아과) ;
  • 김기봉 (부산대학교한방병원 한방소아과)
  • Received : 2017.04.26
  • Accepted : 2017.05.19
  • Published : 2017.05.31

Abstract

Objectives Hataedock is a treatment that dispels toxic heat and meconium which has been accumulated to the fetus from a pregnant mother via orally administering herbal extracts to a newborn baby. This study was conducted to compare the efficacy of Hataedock, with using the extract of Coptis japonica & Glycyrrhiza uralensis, to the early administration of probiotics for immunomodulation in the intestinal mucosa. Methods NC/Nga mice were divided into three groups; Control group (no treatment), CGT group (3-week-old mice given the extract of Coptis japonica & Glycyrrhiza uralensis), and MBT group (3-week-old mice given a Bifidobacterium). After 2 weeks, the intestinal mucosa tissues of each group of mice were observed. Immunohistochemical staining for IL-4, IL-13, CD40, $Fc{\varepsilon}RI$, $p-I{\kappa}B$, EGF, and VEGF in the intestinal mucosa was performed. Results CGT group showed 65% decrease in IL-4, 67% decrease in IL-13, 58% decrease in CD40, 72% decrease in $Fc{\varepsilon}RI$, 76% decrease in $p-I{\kappa}B$, 41% increase in EGF and 100% increase in VEGF compared to the control group. MBT group also showed 50% decrease in IL-4, 63% decrease in IL-13, 33% decrease in CD40, 53% decrease in $Fc{\varepsilon}RI$, 46% decrease in $p-I{\kappa}B$, 23% increase in EGF and 151% increase in VEGF compared to the control group. Conclusions These results suggest that both Hataedock, with using the extract of Coptis japonica & Glycyrrhiza uralensis, and early administration of probiotics were effective in regulating Th2, relieving inflammation and developing intestinal mucosal tissues. Hataedock with extract of Coptis japonica & Glycyrrhiza uralensis may be more effective for immunomodulation in intestinal mucosa than probiotics.

Keywords

References

  1. Asher MI, Montefort S, Bjorksten B, Lai CK, Strachan DP, Weiland SK, Williams H; ISAAC phase three study group. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC phases one and three repeat multicountry cross-sectional surveys. Lancet. 2006;368:733-43. https://doi.org/10.1016/S0140-6736(06)69283-0
  2. Yi YJ, Kim JS. Factors affecting asthma and atopic dermatitis in Korean children: a population-based cross-sectional survey. Child Health Nurs Res. 2015; 21(1):20-7. https://doi.org/10.4094/chnr.2015.21.1.20
  3. Yoo KH. Clinical year in review of asthma for pulmonary physicians: the epidemiologic hypothesis for the relationship between asthma and infectious disease. Tuberc Respir Dis. 2008;65(1):1-6. https://doi.org/10.4046/trd.2008.65.1.1
  4. Michail S. The role of probiotics in allergic diseases. Allergy Asthma Clin Immunol. 2009;5:5. https://doi.org/10.1186/1710-1492-5-5
  5. Kamada N, Seo SU, Chen GY, Gabriel N. Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol. 2013;13:321-35. https://doi.org/10.1038/nri3430
  6. Kim YH, Choi CY, Chun TH. The preventive and therapeutic effects of probiotics in allergic diseases via immune modulation. J Food Hyg Saf. 2016;31(3): 141-52. https://doi.org/10.13103/JFHS.2016.31.3.141
  7. Sullivan A, Nord CE. Probiotics and gastrointestinal diseases. J Intern Med. 2005;257(1):78-92. https://doi.org/10.1111/j.1365-2796.2004.01410.x
  8. Hwang JS, Im SH. Probiotics as an immune modulator for allergic disorders. Pediatr Allergy Respir Dis. 2012;22:325-35. https://doi.org/10.7581/pard.2012.22.4.325
  9. Kang MS, Chang GT, Kim JH. A study on fetal toxicosis removal therapy. J Korean Orient Pediatr. 2003;17(1): 29-51.
  10. Heo J. Donguibogam. 2nd ed. Seoul: Namsandang. 2004.
  11. Cha HY, Ahn SH, Jeong AR, Cheon JH, Park SY, Kim KB. The effects of Hataedock on 2,4-dinitrofluorobenzene induced atopic dermatitis like skin lesion in NC/Nga mice. J Korean Orient Pediatr. 2015;29(4): 97-107. https://doi.org/10.7778/jpkm.2015.29.4.097
  12. Cha HY, Ahn SH, Jeong AR, Cheon JH, Park SY, Choi JY, Kim KB. Anti-inflammatory effects of Hataedock extracted from Coptidis rhizoma and Glycyrrhiza uralensis on atopic dermatitis-like skin lesions of NC/Nga mouse. J Int Korean Med. 2015;36(4):486-97.
  13. Cha HY, Ahn SH, Cheon JH, Park IS, Kim JT, Kim KB. Hataedock treatment has preventive therapeutic effects in atopic dermatitis-induced NC/Nga mice under high-fat diet conditions. Evid Based Complement Alternat Med. 2016;2016:1739760.
  14. Ozdemir O. Various effects of different probiotic strains in allergic disorders: an update from laboratory and clinical data. J Clin Exp Immunol. 2010;160(3):295-304. https://doi.org/10.1111/j.1365-2249.2010.04109.x
  15. Rook GA, Brunet LR. Microbes, immunoregulation, and the gut. Gut. 2005;54(3):317-20. https://doi.org/10.1136/gut.2004.053785
  16. Kalliomaki M, Salminen S, Poussa T, Isolauri E. Probiotics during the first 7 years of life: a cumulative risk reduction of eczema in a randomized, placebo-controlled trial. J Allergy Clin Immunol. 2007;119: 1019-21. https://doi.org/10.1016/j.jaci.2006.12.608
  17. Tang ML, Lahtinen SJ, Boyle RJ. Probiotics and prebiotics: clinical effects in allergic disease. Curr Opin Pediatr. 2010;22:626-34.
  18. Weiner HL. Oral tolerance, an active immunologic process mediated by multiple mechanisms. J Clin Invest. 2000;106:935-7. https://doi.org/10.1172/JCI11348
  19. Faria AM, Weiner HL. Oral tolerance. Immunol Rev. 2005;206:232-59. https://doi.org/10.1111/j.0105-2896.2005.00280.x
  20. Romagnani S. Regulation of the development of type 2 T-helper cells in allergy. Curr Opin Immunol. 1994; 6:838-46. https://doi.org/10.1016/0952-7915(94)90002-7
  21. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and disease. Altern Med Rev. 2003;8(3):223-46.
  22. Romagnani S. T-cell subsets (Th1 versus Th2). Ann Allergy Asthma Immunol. 2000;85(1):9-21. https://doi.org/10.1016/S1081-1206(10)62426-X
  23. Belardelli F. Role of interferons and other cytokines in the regulation of the immune response. APMIS. 1995;103(3):161-79. https://doi.org/10.1111/j.1699-0463.1995.tb01092.x
  24. Akdis M, Akdis CA. IgE class switching and cellular memory. Nat Immunol. 2012;13(4):312-4. https://doi.org/10.1038/ni.2266
  25. Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033-79. https://doi.org/10.1152/physrev.1997.77.4.1033
  26. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2010;125(2Suppl2):S73-80. https://doi.org/10.1016/j.jaci.2009.11.017
  27. Lawrence T. The nuclear factor NF-${\kappa}B$ pathway in inflammation. Cold Spring Harb Perspect Biol. 2009; 1(6):a001651. https://doi.org/10.1101/cshperspect.a001651
  28. Viatour P, Merville MP, Bours V, Chariot A. Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci. 2005;30(1):43-52. https://doi.org/10.1016/j.tibs.2004.11.009
  29. Alcamo E, Mizgerd JP, Horwitz BH, Bronson R, Beg AA, Scott M, Doerschuk CM, Hynes RO, Baltimore D. Targeted mutation of TNF receptor I rescues the RelA-deficient mouse and reveals a critical role for NF-kappa B in leukocyte recruitment. J Immunol. 2001;167(3):1592-600. https://doi.org/10.4049/jimmunol.167.3.1592
  30. Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev. 2012;245:147-63. https://doi.org/10.1111/j.1600-065X.2011.01078.x
  31. McGhee JR, Fujihashi K. Inside the mucosal immune system. PLoS Biol. 2012;10(9):e1001397. https://doi.org/10.1371/journal.pbio.1001397
  32. Resta-Lenert S, Barrett KE. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut. 2003;52(7): 988-97. https://doi.org/10.1136/gut.52.7.988
  33. Buret A, Gall DG, Olson ME, Hardin JA. The role of epidermal growth factor receptor in microbial infections of the gastrointestinal tract. Microbes Infect. 1999;1:1139-44. https://doi.org/10.1016/S1286-4579(99)00201-4
  34. Galan JE, Pace J, Hayman MJ. Involvement of the epidermal growth factor receptor in the invasion of cultured mammalian cells by Salmonella typhimurium. Nature. 1992;357:588-9. https://doi.org/10.1038/357588a0
  35. Wright NA, Pike C, Elia G. Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells. Nature. 1990;343:82-5. https://doi.org/10.1038/343082a0
  36. Resta-Lenert S, Barrett KE. Enteroinvasive bacteria alter barrier and transport properties of human intestinal epithelium: role of iNOS and COX-2. Gastroenterology. 2002;122:1070-87. https://doi.org/10.1053/gast.2002.32372
  37. Lam EK, Yu L, Wong HP, Wu WK, Shin VY, Tai EK, So WH, Woo PC, Cho CH. Probiotic Lactobacillus rhamnosus GG enhances gastric ulcer healing in rats. Eur J Pharmacol. 2007;565(1-3):171-9. https://doi.org/10.1016/j.ejphar.2007.02.050
  38. Dharmani P, De Simone C, Chadee K. The probiotic mixture VSL#3 accelerates gastric ulcer healing by stimulating vascular endothelial growth factor. PLoS one. 2103;8(3):e58671. https://doi.org/10.1371/journal.pone.0058671
  39. Szabo S, Folkman J, Vattay P, Morales RE, Pinkus GS, Kato K. Accelerated healing of duodenal ulcers by oral administration of a mutein of basic fibroblast growth factor in rats. Gastroenterology. 1994;106(4): 1106-11. https://doi.org/10.1016/0016-5085(94)90773-0