References
-
S.E. Moon, H.K. Lee, N.J. Choi, J. Lee, C.A. Choi, W.S. Yang, J. Kim, J.J. Jong, and D.J. Yoo, "Low power consumption micro
$C_2H_5OH$ gas sensor based on micro-heater and screen printing technique", Sens. Actuators B-Chem., Vol. 187, pp. 598-603, 2013. https://doi.org/10.1016/j.snb.2013.05.002 -
Y. Kwon, H. Kim, S. Lee, I.J. Chin, T.Y. Seong, W.I. Lee, and C. Lee, "Enhanced ethanol sensing properties of
$TiO_2$ nanotube sensors", Sens. Actuators B-Chem., Vol. 173, pp. 441-446, 2012. https://doi.org/10.1016/j.snb.2012.07.062 - X. L. Cheng, Z. Rong, X.F. Zhang, Y.M. Xu, S. Gao, H. Zhao, and L.H. Huo, "In situ assembled ZnO flower sensors based on porous nanofibers for rapid ethanol sensing", Sens. Actuators B-Chem., Vol. 188, pp.425-432, 2013. https://doi.org/10.1016/j.snb.2013.07.042
- A. Modjtahedi, A. Amirfazli, and S. Farhad, "Low catalyst loaded ethanol gas fuel cell sensor", Sens. Actuators B-Chem., Vol. 234, pp. 70-79, 2016. https://doi.org/10.1016/j.snb.2016.04.108
- B. Hok, H. Petterson, A.K. Andersson, S. Hassl, and P. Åkerlund,, "Breath analyzer for alcoholocks and screening devices", IEEE Sens., J., Vol. 10, pp. 10-15, 2010. https://doi.org/10.1109/JSEN.2009.2035204
- J.H. Kim, K.H. Lee, and S.H. Yi "NDIR ethanol gas sensor with two elliptical optical structures", Procedia Eng., Vol. 168, pp. 359-362, 2016. https://doi.org/10.1016/j.proeng.2016.11.122
- C. Hummelgard, I. Bryntse, M. Bryzgalov, J. Henning, H. Martin, M. Noren, and H. Rodjegard, "Low-cost NDIR based sensor platform for sub-ppm gas detection", Urban Climate, Vol. 14, pp. 342-350, 2015. https://doi.org/10.1016/j.uclim.2014.09.001
- R. Rubio, J. Santander, L. Fonseca, N. Sabate, I. Gracia, C. Cane, S. Udina, and S. Marco, "Non-selective NDIR array for gas detection", Sens. Actuators B-Chem., Vol. 127, pp. 69-73, 2007. https://doi.org/10.1016/j.snb.2007.07.003
- H. Kudo, M. Sawai, Y. Suzuki, X. Wang, T. Gessei, D. Takahashi, T. Arakawa, and K. Mitsubayashi, "Fiber-optic bio-sniffer (biochemical gas sensor) for high-selective monitoring of ethanol vapor using 335 nm UV-LED", Sens. Actuators B-Chem., Vol. 147, pp. 676-680, 2010. https://doi.org/10.1016/j.snb.2010.03.066
-
B.A. Matveev, G.A. Gavrilov, V.V. Evstropov, N.V. Zotova, S.A. Karandashov, G. Yu. Sotnikova, N.M. Stus, G.N. Talalakin, and Mainen, "Mid-infraed (3-5
${\mu}m$ ) LEDs as sources for gas and liquid sensors", Sens. Actuators B-Chem., Vol. 39, pp. 339-343, 1997. https://doi.org/10.1016/S0925-4005(97)80230-4 -
J. Hodgkinson, R. Smith, W.O. Ho, J.R. Saffell, and R. P. Tatam, "Non-dispersive infrared (NDIR) measure-ment of carbon dioxide at 4.2
${\mu}m$ in a compact and optically efficient sensor", Sens. Actuators B-Chem., Vol. 186, pp. 580-588, 2013. https://doi.org/10.1016/j.snb.2013.06.006 -
J.S. Park and S.H. Yi, "Non-dispersive infrared ray
$CH_4$ gas sensor using focused infrared beam structures", Sens. Mater., Vol. 23, pp. 147-158, 2011. - H.G.E. Martin, U.S. Patent 6,194,735 B1, 2001.
- H.S. Lim, T.Y. Kim and J.S. Lee, Korea Patent 1009596110000, 2010.
-
S.H. Yi, "Temperature compensation methods of non-dispersive infrared
$CO_2$ gas sensor with dual ellipsoidal optical waveguide", Sens. Mater., Vol. 29, pp. 243-252, 2017.
Cited by
- Characteristics and Temperature Compensation of Non-Dispersive Infrared (NDIR) Alcohol Gas Sensors According to Incident Light Intensity vol.18, pp.9, 2018, https://doi.org/10.3390/s18092911