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BEST RANDOM PROXIMITY PAIR THEOREMS FOR

RELATIVELY U-CONTINUOUS RANDOM OPERATORS

WITH APPLICATIONS

Godwin Amechi Okeke

Abstract. It is our purpose in this paper to introduce the concept of

best random proximity pair for subsets A and B of a separable Banach
space E. We prove some best random approximation and best random

proximity pair theorems of certain classes of random operators, which

is the stochastic verse of the deterministic results of Eldred et al. [22],
Eldred et al. [18] and Eldred and Veeramani [19]. Furthermore, our results

generalize and extend recent results of Okeke and Abbas [42] and Okeke

and Kim [43]. Moreover, we shall apply our results to study nonlinear
stochastic integral equations of the Hammerstein type.

1. Introduction

Let (Ω,
∑
, µ) be a complete probability measure space and (E,B(E)) mea-

surable space, where E a separable Banach space, B(E) is Borel sigma algebra
of E, (Ω,

∑
) is a measurable space (

∑
− sigma algebra) and µ a probabil-

ity measure on
∑

, that is, a measure with total measure one. A mapping
ξ : Ω → E is called (a) E− valued random variable if ξ is (

∑
, B(E))- measur-

able (b) strongly µ− measurable if there exists a sequence {ξn} of µ− simple
functions converging to ξ µ− almost everywhere . Due to the separability of
a Banach space E, the sum of two E− valued random variables is E− valued
random variable. A mapping T : Ω × E → E is called a random operator if
for each fixed e in E, the mapping T (., e) : Ω → E is measurable. Denote by
F (T ) = {ξ∗ : Ω → E such that T (ω, ξ∗(ω)) = ξ∗(ω) for each ω ∈ Ω} ( the
random fixed point set of T ). Clearly, the necessary condition for the existence
of a random fixed point of T is that T (Ω × E) ∩ E 6= ∅ (but not sufficient). If
the random fixed point T (ω, ξ∗(ω)) = ξ∗(ω) does not possess a solution, then
d(ξ∗(ω), T ξ∗(ω)) > 0 for all ξ∗ ∈ E and ω ∈ Ω. In such a situation, it is our
purpose to find an element ξ∗ ∈ E such that d(ξ∗(ω), T ξ∗(ω)) is minimum in
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some sense. Motivated by the above facts, we prove some best random approx-
imation and best random proximity pair theorems of certain classes of random
operators, which is the stochastic verse of the deterministic results of Eldred et
al. [22], Eldred et al. [18] and Eldred and Veeramani [19].

The following well-known best approximation theorem is due to Ky Fan [24].

Theorem 1.1. ([24]). Let A be a nonempty compact convex subset of a normed
linear space X and T : A→ be a continuous function. Then there exists x ∈ A
such that ‖x− Tx‖ = dist(Tx,A) := inf{‖Tx− a‖ : a ∈ A}.

The element x ∈ A in Theorem 1.1 is called a best approximant of T in
A. We note that if x ∈ A is a best approximant, then ‖x − Tx‖ need not be
the optimum. Well known mathematicians have explored best proximity point
theorems to find sufficient conditions so that the minimization problem

min
x∈A
‖x− Tx‖ (1.1)

has at least one solution.
In other to have a concrete lower bound, we consider two nonempty subsets

A,B of a separable Banach space E and a random mapping T : Ω × A →
B. The natural question is whether one can find an element x0(ω) ∈ Ω ×
A such that d(x0(ω), Tx0(ω)) = min{d(x(ω), Tx(ω)) : x(ω) ∈ Ω × A}. Since
d(x(ω), Tx(ω)) ≥ dist(A,B), the optimal solution to the problem of minimizing
the random map x(ω) 7→ d(x(ω), Tx(ω)) over the domain Ω×A of the random
mapping T will be the one for which the valued dist(A,B) is attained. A point
x0(ω) ∈ Ω×A is called a best random proximity point of T if d(x0(ω), Tx0(ω)) =
dist(A,B). We note that if dist(A,B) = 0, then the best random proximity
point reduces to a random fixed point of T.

The class of relatively nonexpansive mappings was introduced by Eldred et
al. [18]. They studied the existence of best proximity points for such class of
nonlinear mappings. Their deterministic results generalize the celebrated fixed
point theorem for nonexpansive mappings due to Browder [15], Göhde [27], Kirk
[34] and Goebel and Kirk [26]. The concept of relatively nonexpansive mappings
is defined as follows by Eldred et al. [18].

Definition 1. ([18]). Let A,B be nonempty subsets of a metric space (X, d).
A mapping T : A∪B → A∪B is said to be a relatively nonexpansive mapping
if
1. T (A) ⊆ B, T (B) ⊆ A;
2. d(Tx, Ty) ≤ d(x, y), for all x ∈ A, y ∈ B.

Note that a relatively nonexpansive mapping need not be a continuous map-
ping. Moreover, every nonexpansive self-map can be considered as a relatively
nonexpansive mapping (see, [18], [22]). Eldred et al. [18] introduced and used
a geometric notion called proximal normal structure to prove the existence of
a best proximity point for relatively nonexpansive mappings. They proved the
following proximity pair theorem.



BEST RANDOM PROXIMITY PAIR THEOREMS 273

Theorem 1.2. ([18]). Let (A,B) be a nonempty, weakly compact convex pair
in a Banach space X. Let T : A ∪ B → A ∪ B be a relatively nonexpansive
mapping and suppose (A,B) has a proximal normal structure. Then there exists
(x0, y0) ∈ A×B such that ‖x0 − Tx0‖ = ‖Ty0 − y0‖ = dist(A,B).

Eldred and Veeramani [19] proved some existence of best proximity points
results for the class of cyclic contraction mappings. The concept of cyclic con-
traction mappings is defined as follows.

Definition 2. ([19]). Let A,B be nonempty subsets of a metric space X. A
mapping T : A ∪ B → A ∪ B is said to be a cyclic contraction if there exists
k ∈ [0, 1) such that
1. T (A) ⊆ B, T (B) ⊆ A;
2. d(Tx, Ty) ≤ kd(x, y) + (1− k)dist(A,B), for all x ∈ A, y ∈ B.

Note that the class of cyclic contraction mappings defined on A ∪ B, where
A,B are nonempty subsets of a metric space, is strictly contained in the class of
relatively nonexpansive mappings on A∪B (see [22]). The authors in [22] intro-
duced and studied the class of relatively u-continuous mappings which properly
contains the class of relatively nonexpansive mappings. They studied sufficient
conditions for the existence of a best proximity point for this class of nonlinear
mappings. The following theorem was proved by the authors in [22].

Theorem 1.3. ([22]). Let A,B be nonempty compact convex subsets of a
strictly convex Banach space X and T : A ∪ B → A ∪ B be a relatively u-
continuous mapping. Then there exists (x0, y0) ∈ A×B such that ‖x0−Tx0‖ =
‖y0 − Ty0‖ = dist(A,B).

Real world problems are embedded with uncertainties and ambiguities. To
deal with probabilistic models, Probabilistic functional analysis has emerged
as one of the momentous mathematical discipline and attracted the attention
of several mathematicians over the years in view of its applications in diverse
areas from pure mathematics to applied sciences. Random nonlinear analysis,
an important branch of probabilistic functional analysis, deals with the solution
of various classes of random operator equations and the related problems. Of
course, the development of random methods have revolutionized the financial
markets. Random fixed point theorems are stochastic generalizations of classical
or deterministic fixed point theorems and are required for the theory of random
equations, random matrices, random partial differential equations and various
classes of random operators arising in physical systems (see, Joshi and Bose [30],
Beg and Abbas [7], Beg and Abbas [8], Okeke and Abbas [42], Okeke and Kim
[43]), Okeke and Kim [44]. Random fixed point theory was initiated in 1950s by
Prague school of probabilists. Spacek [55] and Hans [28] established a stochastic
analogue of the Banach fixed point theorem in a separable complete metric
space. Itoh [29] in 1979 generalized and extended Spacek and Han’s theorem to
a multivalued contraction random operator. The survey article by Bharucha-
Reid [14] in 1976, where he studied sufficient conditions for a stochastic analogue



274 G. A. OKEKE

of Schauder’s fixed point theorem for random operators, gave wings to random
fixed point theory. Now this area has become full fledged research area and
many interesting techniques to obtain the solution of nonlinear random system
have appeared in literature (see, [5],[9]-[11], [16], [29]-[30], [41], [42], [43], [48],
[54], [55], [57], [59]).

Papageorgiou [48] established an existence of random fixed point of measur-
able closed and nonclosed valued multifunctions satisfying general continuity
conditions and hence improved the results in [23], [29] and [52]. Xu [57] ex-
tended the results of Itoh to a nonself-random operator T, where T satisfies
weakly inward or the Leray-Schauder condition. Shahzad and Latif [54] proved
a general random fixed point theorem for continuous random operators. As
applications, they derived a number of random fixed points theorems for var-
ious classes of 1-set and 1-ball contractive random operators. Arunchai and
Plubtieng [5] obtained some random fixed point results for the sum of a weakly-
strongly continuous random operator and a nonexpansive random operator in
Banach spaces.

The concept of best random proximity points, which is an extension of the
notion of random fixed points was introduced by Anh [2]. He considered certain
random operator equations and extended certain random fixed point theorems.
It is our purpose in this paper to study the best random proximity points of
some new classes of random operators. The results of this study improves
and generalizes several deterministic best proximity point results, including the
results of the authors [2], [18], [19], [20], [21], [22], [36] among others.

2. Preliminaries

Definition 3. ([2]). Let X,Y be metric spaces, f, g : Ω ×X → Y be random
operators. Consider the random equation of the form

f(ω, x) = g(ω, x). (2.1)

We say that the equation (2.1) has a random solution if there exists an X
-valued random variable ξ : Ω→ X such that, for every ω,

f(ω, ξ(ω)) = g(ω, ξ(ω)).

We call ξ a random solution of the equation (2.1).
Clearly, if the equation (2.1) has a random solution then it has a deterministic

solution for each ω ∈ Ω. However, the converse is not true (see, e.g. [2], Example
2).

Definition 4. ([2]). Let A,B be two closed subsets of a Polish space X and
f : Ω×A→ B a random operator. A measurable mapping ξ : Ω→ A is called
a best random proximity point of f if

d(ξ(ω), f(ω, ξ(ω))) = d(A,B)

for any ω ∈ Ω.
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Clearly, the best random proximity point of a random operator f becomes
a random fixed point of f if A ∩ B 6= ∅. This means that the concept of best
random proximity point is an extension of the concept of random fixed point.
Generally, if f has a best random proximity point for each ω ∈ Ω the mapping
f(ω, .) has a best proximity point. However, Anh [2] proved that the converse
is not true in the following example.
Example 2.1 ([2]). Let Ω = [0, 1] and F be the family of subsets A ∈ Ω with the
property that either A is countable or the complement Ac is coutable. Define a
probability measure P on F by

P (A) =

 0 ifA is countable

1 otherwise.

Let A = B = [0, 1]. Define a mapping f : Ω×A→ B by

f(ω, x) =

 x if ω = x

0 if ω 6= x.

Anh [2] showed that f(ω, .) has a unique best proximity point x = ω. However,
f does not have a best random proximity point.

The following theorem by Anh [2] gives a sufficient condition ensuring that
the existence of a deterministic solution for each ω implies the existence of a
random solution for a general random equation.

Theorem 2.1. ([2]). Let f, g : Ω × X → Y be measurable random operators
and F : Ω→ C(X) a measurable mapping. If for each ω, the random equation
f(ω, x) = g(ω, x) has a deterministic solution in F (ω) then it has a random
solution in F (ω).

Similarly, the following theorem of Anh [2] gives a sufficient condition on f
ensuring that the existence of a best proximity point of f(ω, .) for each ω implies
the existence of a best random proximity point of f.

Theorem 2.2. ([2]). Let A and B be two closed subsets of a Polish space X,
f : Ω × A → B a measurable random operator. If f(ω, .) has a best proximity
point for each ω ∈ Ω then f has a best random proximity point.

Definition 5. ([36]). Let X be a metric space and let A and B be nonempty
subsets of X. Let

A0 = {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B};

B0 = {x ∈ B : d(x, y) = dist(A,B) for some y ∈ A}.

A pair (x, y) ∈ A0×B0 for which d(x, y) = dist(A,B) is called a best proximity
pair for A and B.
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Kirk et al. [36] gave sufficient conditions which guarantee the nonemptiness
of A0 and B0.
Example 2.2 ([36]). Let

A = {(1, y) : 0 ≤ y ≤ 1}, B = {(2, y) : 0 ≤ y ≤ 1}.
Define T : A→ B by setting T (1, y) = (2, 1− y). Then A0 = A, and B0 = B.

Let (Ω,
∑
, µ) be a complete probability measure space and A,B be nonempty

weakly compact convex subsets of a separable Banach space E. Consider the
mapping P : Ω×A ∪B → A ∪B defined as

P (ω, x) =

 PB(ω, x), if x ∈ A, ω ∈ Ω

PA(ω, x), if x ∈ B, ω ∈ Ω.
(2.2)

If E is a strictly convex separable Banach space, then P is a single valued
mapping and satisfies P (Ω×A) ⊆ B, P (Ω×B) ⊆ A.

Definition 6. ([22]). Let A,B be nonempty subsets of a Banach space X. A
mapping T : A ∪B → A ∪B, is said to be a relatively u-continuous mapping if
it satisfies
1. T (A) ⊆ B, T (B) ⊆ A;
2. for each ε > 0, there exists a δ > 0 such that ‖Tx − Ty‖ < ε + dist(A,B),
whenever ‖x− y‖ < δ + dist(A,B), for all x ∈ A, y ∈ B.

Note that every relatively nonexpansive mapping is a relatively u-continuous
mapping. The following example given by Eldred et al. [22] shows that the
converse is not true.
Example 2.3 ([22]). Let us consider (X = R2, ‖.‖2). Let A = {(0, t) : 0 ≤ t ≤
1} and B = {(1, s) : 0 ≤ s ≤ 1}. Define T : A ∪B → A ∪B by

T (x, y) =

 (1,
√
y) if x = 0

(0,
√
y) if x = 1.

(2.3)

Then T is a relatively u-continuous mapping but not a relatively nonexpansive
mapping.

Motivated by the results of Eldred et al. [22], we now give the stochastic
verse of the definition of relatively u-continuous mappings as follows.

Definition 7. Let (Ω,
∑
, µ) be a complete probability measure space and A,B

be nonempty subsets of a separable Banach space E. A mapping T : Ω×A∪B →
A ∪B, is said to be a relatively u-continuous random mapping if it satisfies
1. T (Ω×A) ⊆ B, T (Ω×B) ⊆ A;
2. for each ε > 0, there exists a δ > 0 such that ‖T (ω, x) − T (ω, y)‖ < ε +
dist(A,B), whenever ‖x(ω)− y(ω)‖ < δ + dist(A,B), for all x ∈ A, y ∈ B and
ω ∈ Ω.

The following definitions are needed in this study and can be found in Beg
et al. [12].
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Definition 8. A mapping x : Ω → E is said to be a finitely valued random
variable, if it is constant on each finite number of disjoint sets Ai ∈

∑
and is

equal to 0 on Ω− (
⋃n
i=1Ai). A mapping x is called a simple random variable if

it is finitely valued and µ{ω : ‖x(ω)‖ > 0} <∞.

Definition 9. A mapping x : Ω → E is said to be E-valued random variable,
if the inverse image under the mapping x of every Borel subset β of E belongs
to

∑
; that is x−1(β) ∈

∑
for all β ∈ B(E).

Definition 10. A mapping x : Ω → E is said to be a strong random variable,
if there exists a sequence {xn(ω)} of simple random variables which converges
to x(ω) almost surely, i.e., there exists a set A0 ∈

∑
with µ(A0) = 0 such that

limn→∞ xn(ω) = x(ω), ω ∈ Ω−A0.

Definition 11. A mapping x : Ω → E is said to be a weak random variable,
if the function x∗(x(ω)) is real valued random variables for each x∗ ∈ E∗, the
space E∗ denoting the first normed dual space of E.

In a separable Banach space X, the notions of strong and weak random
variables x : Ω → X coincide and in respect of such a space X, x is called a
random variable (see, Joshi and Bose [30], Corollary 1).

Let Y be another Banach space, Joshi and Bose [30] gave the following defi-
nitions which will be needed in this study.

Definition 12. A mapping F : Ω×X → Y is said to be a continuous random
mapping if the set of all ω ∈ Ω for which F (ω, x) is a continuous function of x
has measure one.

Definition 13. A mapping F : Ω×X → Y is said to be a random mapping if
F (ω, x) = y(ω) is a Y−valued random variable for every x ∈ X.

Definition 14. A random mapping F : Ω × X → Y is said to be demi-
continuous at x ∈ X if

‖xn − x‖ → 0 implies F (ω, xn) ⇀ F (ω, x) almost surely.

The following definitions is also due to Joshi and Bose [30].

Definition 15. An equation of the type F (ω, x(ω)) = x(ω) where F : Ω×X →
X is a random mapping is called a random fixed point equation.

Definition 16. Any mapping x : Ω → X which satisfies random fixed point
equation F (ω, x(ω)) = x(ω) almost surely is said to be a wide sense solution of
the fixed point equation.

Definition 17. Any X−valued random variable x(ω) which satisfies

µ{ω : F (ω, x(ω)) = x(ω)} = 1

is said to be a random solution of the fixed point equation or a random fixed
point of F.
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Remark 1. It is known that a random solution is a wide sense solution of the
fixed point equation. The converse is not true. This was demonstrated in the
following example given by Joshi and Bose [30].

Example 2.4 LetX be the set of all real numbers and let E be a non measurable
subset of X. Let F : Ω × X → Y be a random mapping defined as F (ω, x) =
x2 + x− 1 for all ω ∈ Ω. In this case, the real valued function x(ω), defined as
x(ω) = 1 for all ω ∈ Ω is a random fixed point of F. However, the real valued
function y(ω) defined as

y(ω) =

 −1, ω /∈ E

1, ω ∈ E
(2.4)

is a wide sense solution of the fixed point equation F (ω, x(ω)) = x(ω), without
being a random fixed point of F.

3. Best proximity points theorems

In this section, we shall prove some common best proximity point results in
the setting of hyperconvex metric spaces. We establish that Theorem 4.2 of
Eldred et al. [22] holds in the setting of hyperconvex metric spaces.

Definition 18. Let A,B be nonempty convex subsets of a normed linear space.
A relatively u-continuous mapping T : A ∪ B → A ∪ B is said to be affine if
T (λx+ (1−λ)y) = λTx+ (1−λ)Ty, for all x, y ∈ A or x, y ∈ B and λ ∈ (0, 1).

We also define FA(T ) = {x ∈ A : d(x, Tx) = dist(A,B)}, FB(T ) = {y ∈ B :
d(y, Ty) = dist(A,B)}.

The following theorems will be needed in the sequel.

Theorem 3.1. (see [39]). Let X be a paracompact topological space, (M,d) a
hyperconvex metric space, and F : X → 2M an almost lower semicontinuous
mapping with admissible values. Then F has a continuous selection; that is,
there is a continuous mapping f : X → M such that f(x) ∈ F (x) for each
x ∈ X.

Theorem 3.2. (see [31, 35]). Let (M,d) be a compact hyperconvex metric space
and f : M →M a continuous mapping. Then f has a fixed point.

Theorem 3.3. Let A,B be admissible subsets of a hyperconvex metric space
(M,d). Let A0 be a compact subset of M and F = {T1, T2, · · · , Tn} be a family of
commuting, affine, relatively u-continuous mappings on A∪B such that T (A) ⊂
B, and T (B) ⊂ A. Then there exists x0 ∈ A such that d(x0, Tix0) = dist(A,B),
for all i = 1, 2, · · · , n.

Proof. We define

FA(Ti) = {x ∈ A : d(x, Ti(x)) = dist(A,B)}
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and

FB(Ti) = {y ∈ B : d(y, Ti(y)) = dist(A,B)}; ∀i = 1, 2, · · · , n.
By a result of Kirk et al. [36], the sets A0 and B0 are nonempty and hypercon-
vex. For each x ∈ A0, choose y ∈ B0 such that d(x, y) = dist(A,B). Hence, by
u-continuity of Ti ∀i = 1, 2, · · · , n, for each ε > 0 there is a δ > 0 such that for
u ∈ A, v ∈ B,

d(u, v) < δ + dist(A,B)

implies that

d(Ti(u), Ti(v)) < ε+ dist(A,B), ∀i = 1, 2, · · · , n. (3.1)

Hence, d(Ti(x), T (y)) = dist(A,B). This implies that T (x) ∈ B0 for each x ∈
A0. We define an open neighborhood of x in A0 by U(x) = {u ∈ A0 : d(u, x) <
δ}. Then u ∈ U(x) implies that

d(u, y) ≤ d(u, x) + d(x, y) < δ + dist(A,B). (3.2)

Since Ti is u-continuous for each i = 1, 2, · · · , n, we have

d(Ti(u), Ti(y)) < ε+ dist(A,B). (3.3)

We define a multivalued function F : A0 → 2A0 by

F (v) = B(Ti(v); dist(A,B)) ∩A, ∀v ∈ A0. (3.4)

Since T (v) ∈ B0 for all v ∈ A0, F (v) is a nonempty subset of A0. Since A is
admissible, it follows that F (v) is admissible.

Next, we prove that F is almost lower semicontinuous by showing that
B(Ti(y); ε) ∩ F (u) 6= ∅ for u ∈ U(x). Using (3.3) and the hyperconvexity of
M, for all u ∈ U(x), we have

B(Ti(y); ε) ∩B(Ti(u); dist(A,B)) 6= ∅, ∀i = 1, 2, · · · , n. (3.5)

Since Ti(u) ∈ B0, for each i = 1, 2, · · · , n, we have

B(Ti(u); dist(A,B)) ∩A 6= ∅. (3.6)

We have that for each x∗ ∈ B(Ti(u); dist(A,B))∩A implies that x∗ ∈ A0, since
d(x∗, Ti(u)) = dist(A,B). Therefore,

B(Ti(u); dist(A,B)) ∩A ⊂ A0. (3.7)

Using (3.5) and (3.6) and the fact that Ti(y) ∈ A0 for all i = 1, 2, · · · , n, the sets
B(Ti(y); ε), B(Ti(u); dist(A,B)) and A have pairwise nonempty intersection.
Since all of these sets are ball intersections, the hyperconvexity of the space M
implies that

B(Ti(y); ε) ∩B(Ti(u); dist(A,B)) ∩A 6= ∅. (3.8)

Moreover by (3.7) B(Ti(y); ε) ∩ B(Ti(u); dist(A,B)) ∩ A ⊂ A0. It follows by
(3.8) that

B(Ti(y); ε) ∩ F (u) 6= ∅, ∀u ∈ U(x).

This implies that the mapping F is almost lower semicontinuous.
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Using the selection theorem of Markin [39] (see Theorem 3.1) and almost
lower semicontinuous mapping on a hyperconvex space with nonempty admissi-
ble values has a continuous selection, that is, there is a continuous f : A0 → A0

such that f(x) ∈ F (x) for each x ∈ A0. Using Theorem 3.2, a continuous self-
mapping on a compact hyperconvex space has a fixed point. Hence, there is a
c ∈ A0 such that c = f(c) ∈ F (c). Using the definition of F,

d(c, Ti(c)) = dist(A,B). (3.9)

The proof of Theorem 3.3 is completed.
�

4. Best random proximity points theorems

We begin this section by defining the sets A0 and B0 in a complete probability
measure space. We also introduce the concept of best random proximity pair for
subsets A and B of a separable Banach space E.

Definition 19. Let (Ω,
∑
, µ) be a complete probability measure space, A,B

be nonempty subsets of a separable Banach space E. Let

A0 = {x : Ω→ A : ‖x(ω)− y(ω)‖ = dist(A,B), for some mapping y : Ω→ B}

and

B0 = {y : Ω→ B : ‖x(ω)− y(ω)‖ = dist(A,B), for some mapping x : Ω→ A}.

A pair (x(ω), y(ω)) ∈ A0×B0 for which ‖x(ω)− y(ω)‖ = dist(A,B) is called
a best random proximity pair for A and B.

Motivated by the results of Anh [2] (see Theorem 2.1 and Theorem 2.2), we
now prove the following theorem which gives a sufficient condition to establish
that the existence of a best proximity pair of A0 × B0 for each ω ∈ Ω implies
the existence of a best random proximity pair of A0 ×B0.

Theorem 4.1. Let (Ω,
∑
, µ) be a complete probability measure space, A,B be

nonempty subsets of a separable Banach space E and ϕ : Ω × (A0 × B0) → R
be a measurable random operator. If ϕ(ω, .) has a best proximity pair for each
ω ∈ Ω, then ϕ has a best random proximity pair.

Proof. Define ϕ : Ω× (A0 ×B0)→ R by ϕ(ω, (x, y)) = ‖x(ω)− y(ω)‖. Then ϕ
is a measurable random operator. Clearly if ϕ(ω, (x, y)) has a best proximity
pair for each ω ∈ Ω, then the random equation ϕ(ω, (x, y)) = dist(A,B) has a
deterministic solution in F (ω) = A0 ×B0. By the results of Anh ([2], Theorem
2.3), the random equation ϕ(ω, (x, y)) = dist(A,B) has a random solution.
Hence ‖x(ω) − y(ω)‖ = dist(A,B) for each ω ∈ Ω. i.e. (x(ω), y(ω)) is a best
random proximity pair of ϕ. The proof of Theorem 4.1 is completed. �

Next, we prove the following lemma.
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Lemma 4.2. Let (Ω,
∑
, µ) be a complete probability measure space, A,B be

nonempty subsets of a separable Banach space E. Then A0 and B0 (as defined
in Definition 4.1) are nonempty and satisfy PB(Ω×A0) ⊆ B0 and PA(Ω×B0) ⊆
A0.

Proof. Now

dist(A,B) = inf{‖x(ω)− y(ω)‖ : x ∈ A, y ∈ B,ω ∈ Ω},

there exist sequences {xn(ω)} in Ω×A and {yn(ω)} in Ω×B such that

‖xn(ω)− yn(ω)‖ −→ dist(A,B).

Since A and B are separable Banach spaces, we suppose that xn(ω) converges
to x0(ω) ∈ Ω×A and yn(ω) converges to y0(ω) ∈ Ω×B. Hence,

‖x0(ω)− y0(ω)‖ ≤ lim ‖xn(ω)− yn(ω)‖ = dist(A,B),

establishing the fact that A0 and B0 are nonempty.
Next if y(ω) ∈ PB(Ω × A0), then y(ω) = PB(x(ω)) for some x(ω) ∈ A0.

Clearly,

‖x(ω)− y(ω)‖ = dist(A,B).

Therefore, PB(Ω × A0) ⊆ B0. Similarly, we can show that PA(Ω × B0) ⊆ A0.
The proof of Lemma 4.2 is completed. �

Proposition 4.3. Let (Ω,
∑
, µ) be a complete probability measure space, A,B

be nonempty subsets of a separable Banach space E and T : Ω × A ∪ B →
A ∪ B be a relatively u-continuous random mapping. Then T (Ω × A0) ⊆ B0,
T (Ω×B0) ⊆ A0.

Proof. Now

A0 = {x : Ω→ A : ‖x(ω)− y(ω)‖ = dist(A,B), for some mapping y : Ω→ B}

and

B0 = {y : Ω→ B : ‖x(ω)− y(ω)‖ = dist(A,B), for some mapping x : Ω→ A}.

Suppose that A0 = ∅, then B0 = ∅. Otherwise, we need to show that ∀x ∈ A0

and ω ∈ Ω, Tx(ω) ∈ B0. Now for arbitrary x ∈ A and ω ∈ Ω, there exists y ∈ B
such that ‖x(ω) − y(ω)‖ = dist(A,B). Since T is a relatively u-continuous
random mapping, we have that for each ε > 0 there exists δ > 0 such that
‖T (ω, a)− T (ω, b)‖ < ε+ dist(A,B), whenever ‖a(ω)− b(ω)‖ < δ + dist(A,B)
for all a ∈ A, b ∈ B and ω ∈ Ω. Since ‖x(ω) − y(ω)‖ = dist(A,B), for each
δ > 0. This implies that ‖T (ω, x)−T (ω, y)‖ = dist(A,B), hence T (x(ω)) ∈ B0.
This means that T (Ω×A0) ⊆ B0. Similarly, we can show that T (Ω×B0) ⊆ A0.
This completes the proof of Proposition 4.3.

�
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Proposition 4.4. Let (Ω,
∑
, µ) be a complete probability measure space, A,B

be nonempty subsets of a weakly compact convex subsets of a strictly convex sep-
arable Banach space E. Let T : Ω×A∪B → A∪B be a relatively u-continuous
random mapping and P : A ∪ B → A ∪ B be a random mapping defined as
in (2.2). Then TP (ω, x) = P (T (ω, x)), for all x ∈ A0 ∪ B0 and ω ∈ Ω, i.e.
PA(T (ω, x)) = T (PB(ω, x)), x ∈ A0 and ω ∈ Ω.

Proof. Take a countable dense subset {xn} of A ∪ B, define the map T (ω)
by T (ω) = {ω ∈ Ω, x ∈ A ∪ B : T (ω, x) = x}, then by a fixed point the-
orem of Furi and Vignoli [25], T (ω) ∈ K(A ∪ B), where K(A ∪ B) denotes
the non-empty compact subset of A ∪ B. Moreover by ([29] Theorem 2.1),
T is measurable. Let x ∈ A0, then there exists a unique y ∈ B0 such that
‖x(ω) − y(ω)‖ = dist(A,B). Hence, y = PB(ω, x) and x = PA(ω, y). But T is
a relatively u-continuous mapping, then by Proposition 4.1, T (ω, x) ∈ B0 and
T (ω, y) ∈ A0 with ‖T (ω, x)−T (ω, y)‖ = dist(A,B). Since E is a strictly convex
separable Banach space, and the uniqueness of metric projection operator, we
have PA(T (ω, x)) = T (ω, y) = T (PB(ω, x)). Hence, for each x ∈ A0, ω ∈ Ω,
we have PA(T (ω, x)) = T (ω, y) = T (PB(ω, x)). Similarly, we can show that
y ∈ B0, T (PA(ω, y)) = PB(T (ω, y)). Hence, TP (ω, x) = P (T (ω, x)), for each
x ∈ A0 ∪B0, ω ∈ Ω. This completes the proof of Proposition 4.4. �

Theorem 4.5. Let (Ω,
∑
, µ) be a complete probability measure space, A,B be

nonempty separable closed convex subsets of a Hilbert space X, and let T : Ω×
A∪B → X be a relatively u-continuous random mapping such that T (ω,A∪B)
is bounded, for any ω ∈ Ω. Then there exists a measurable map ϕ : Ω→ A ∪B
such that

‖ϕ(ω)− T (ω, ϕ(ω))‖ = d(A,B), for each ω ∈ Ω.

Proof. Consider the metric projection operator PA : X → A on A. Since T (Ω×
A0) ⊆ B0 and PA(Ω × B0) ⊆ A0 (by Proposition 4.1 and Lemma 4.1), the
composite mapping PA ◦T restricted to A0 is a self-map. i.e. PA ◦T : A0 → A0.
Assume that the measurable map x0(ω) ∈ Ω×A0 is a random fixed point of the
mapping PA ◦ T, i.e. PA(T (ω, x0(ω)) = x0(ω), then ‖x0(ω) − T (ω, x0(ω))‖ =
dist(Tx0(ω), A). Since Tx0 ∈ B0 implies that there exists x∗ ∈ A0 such that
‖x∗(ω)− T (ω, x0)‖ = dist(A,B). Hence, dist(T (ω, x0), A) = dist(A,B), since

dist(A,B) ≤ dist(T (ω, x0), A) ≤ ‖T (ω, x0)− x∗(ω)‖ = dist(A,B).

Now, let y ∈ X we have

‖PA(y)− y‖ = d(y,A ∪B).

Since PA is nonexpansive in Hilbert space X, then PA ◦ T : Ω × A ∪ B →
A ∪ B. Clearly, PA ◦ T is a relatively u-continuous random mapping and PA ◦
T (ω,A ∪ B) is bounded, for each ω ∈ Ω. From Itoh ([29], Theorem 2.1) there
exists a random fixed point of PA ◦ T. That is, there exists a measurable map
ϕ : Ω → A ∪ B such that PA ◦ T (ω, ϕ(ω)) = ϕ(ω), for all ω ∈ Ω. Hence,
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‖ϕ(ω)− T (ω, ϕ(ω))‖ = ‖PA ◦ T (ω, ϕ(ω))− T (ω, ϕ(ω))‖
= d(T (ω, ϕ(ω)), A)
= dist(A,B), for each ω ∈ Ω.

The proof of Theorem 4.5 is completed. �

Remark 2. Observe that ϕ(ω) in Theorem 4.1 is a best random proximity point
of the random operator T. Moreover, the best random proximity point and the
random fixed point of T coincides if A = B.

Corollary 4.6. Let (Ω,
∑
, µ) be a complete probability measure space, A,B be

nonempty separable closed convex subsets of a Hilbert space X, and let T : Ω×
A∪B → X be a relatively nonexpansive random mapping such that T (ω,A∪B)
is bounded, for any ω ∈ Ω. Then there exists a measurable map ϕ : Ω→ A ∪B
such that

‖ϕ(ω)− T (ω, ϕ(ω))‖ = d(A,B), for each ω ∈ Ω.

Proof. Since T is a relatively nonexpansive random mapping, then for each
x ∈ A, y ∈ B and ω ∈ Ω, we have
1. T (Ω×A) ⊆ B, T (Ω×B) ⊆ A.
2. ‖T (ω, x)− T (ω, y)‖ ≤ ‖x(ω)− y(ω)‖.
It follows that for any ε > 0 and ω ∈ Ω, there exists a δ > 0 such that
‖T (ω, x)−T (ω, y)‖ < ε+ dist(A,B), whenever ‖x(ω)− y(ω)‖ < δ+ dist(A,B),
for all x ∈ A, y ∈ B and ω ∈ Ω. This implies that T is a relatively u-continuous
random mapping. Hence, this corollary follows immediately from Theorem 4.1.

�

Remark 3. Since every nonexpansive self-map can be considered as a relatively
nonexpansive mapping (see, e.g. Eldred et al. [22]), it follows that Corollary
4.6 is valid if T is a nonexpansive mapping.

Corollary 4.7. Let (Ω,
∑
, µ) be a complete probability measure space, A,B be

nonempty separable closed convex subsets of a Hilbert space X, and let g, h :
Ω × A ∪ B → X be random operators such that g is a cyclic contraction and
h is compact and relatively u-continuous random operator. Then there exists a
measurable map ϕ : Ω→ A ∪B such that

‖ϕ(ω)− f(ω, ϕ(ω))‖ = d(A,B), for each ω ∈ Ω,

where f = g + h. If additionally f(Ω× ∂(A ∪B)) ⊆ A ∪B, then ϕ is a random
fixed point of f.

Proof. Since the class of cyclic contraction mappings defined on A∪B is strictly
contained in the class of relatively nonexpansive mappings on A ∪B and every
relatively nonexpansive mapping is a relatively u-continuous mapping (see, e.g.
Eldred et al. [22]). It remains to be shown that f + g is a relatively u-continous
random mapping.
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Since the random mappings g, h : Ω × A ∪ B → A ∪ B are relatively u-
continuous random mappings, it follows that the following conditions are satis-
fied:
1. g(Ω×A) ⊆ B, g(Ω×B) ⊆ A;
2. for each ε > 0, there exists a δ1 > 0 such that ‖g(ω, x) − g(ω, y)‖ <
ε
2 + dist(A,B), whenever ‖x(ω)− y(ω)‖ < δ1 + dist(A,B), for all x ∈ A, y ∈ B
and ω ∈ Ω.
and
3. h(Ω×A) ⊆ B, h(Ω×B) ⊆ A;
4. for each ε > 0, there exists a δ2 > 0 such that ‖h(ω, x) − h(ω, y)‖ <
ε
2 + dist(A,B), whenever ‖x(ω)− y(ω)‖ < δ2 + dist(A,B), for all x ∈ A, y ∈ B
and ω ∈ Ω.
Take δ := min{δ1, δ2}. Then for all x ∈ A, y ∈ B and ω ∈ Ω such that
‖x(ω)− y(ω)‖ < δ + dist(A,B) we have,
‖(g + h)(ω, x)− (g + h)(ω, y)‖ = ‖g(ω, x)− g(ω, y) + h(ω, x)− h(ω, y)‖

< ‖g(ω, x)− g(ω, y)‖+ ‖h(ω, x)− h(ω, y)‖
< ε

2 + ε
2 = ε.

Hence g+h is a relatively u-continuous random mapping. Hence, this corollary
follows immediately from Theorem 4.5. �

Remark 4. Corollary 4.7 improves and generalizes the results of Sehgal and
Waters ([53], Theorem 3) and several related results in literature.

5. Application to a random nonlinear integral equation of the
Hammerstein type

In this section, we shall use our results to prove the existence of a solution
in a Banach space of a random nonlinear integral equation of the form:

x(t;ω) = h(t;ω) +

∫
S

k(t, s;ω)f(s, x(s;ω))dµ0(s) (5.1)

where
(i) S is a locally compact metric space with a metric d on S × S equipped with
a complete σ-finite measure µ0 defined on the collection of Borel subsets of S;
(ii) ω ∈ Ω, where ω is a supporting element of a set of probability measure space
(Ω, β, µ);
(iii) x(t;ω) is the unknown vector-valued random variable for each t ∈ S;
(iv) h(t;ω) is the stochastic free term defined on t ∈ S;
(v) k(t, s;ω) is the stochastic kernel defined for t and s in S and
(vi) f(t, x) is a vector-valued function of t ∈ S and x.
The integral equation (5.1) is interpreted as a Bochner integral, (see Padgett
[47]).

Furthermore, we shall assume that S is the union of a decreasing sequence
of countable family of compact family of compact sets {Cn} such that for any
other compact set in S there is a Ci, which contains it, (see, Arens [4]).
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Definition 20. We define the space C(S,L2(Ω, β, µ)) to be the space of all
continuous functions from S into L2(Ω, β, µ) with the topology of uniform con-
vergence on compact sets of S that is for each fixed t ∈ S, x(t;ω) is a vector
valued random variable such that

‖x(t;ω)‖2L2(Ω,β,µ) =

∫
Ω

|x(t;ω)|2dµ(ω) <∞.

Note that C(S,L2(Ω, β, µ)) is a locally convex space, whose topology is de-
fined by a countable family of semi-norms (see, Yosida [58]) given by

‖x(t;ω)‖n = sup
t∈Cn

‖x(t;ω)‖L2(Ω,β,µ), n = 1, 2, · · ·

Moreover, C(S,L2(Ω, β, µ)) is complete relative to this topology, since L2(Ω, β, µ)
is complete.

We define BC = BC(S,L2(Ω, β, µ)) to be the Banach space of all bounded
continuous functions from S into L2(Ω, β, µ) with norm

‖x(t;ω)‖BC = sup
t∈S
‖x(t;ω)‖L2(Ω,β,µ).

The space BC ⊂ C is the space of all second order vector valued stochastic
process defined on S, which is bounded and continuous in mean square. We will
consider the function h(t;ω) and f(t, x(t;ω)) to be in the space C(S,L2(Ω, β, µ))
with respect to the stochastic kernel. We assume that for each pair (t, s),
k(t, s, ω) ∈ L∞(Ω, β, µ) and denote the norm by

|‖k(t, s;ω)‖| = ‖k(t, s;ω)‖L∞(Ω,β,µ)

= µ− ess supω∈Ω |k(t, s;ω)|.
Suppose that k(t, s;ω) is such that |‖k(t, s;ω)‖|.‖x(s;ω)‖L2(Ω,β,µ) is µ0-integrable

with respect to s for each t ∈ S and x(s;ω) in C(S,L2(Ω, β, µ)) and there exists
a real valued function G defined µ0-a.e. on S, so that G(S)‖x(s;ω)‖L2(Ω,β,µ) is
µ0-integrable and for each pair (t, s) ∈ S × S,

|‖k(t, u;ω)− k(s, u;ω)‖|.‖x(u, ω)‖L2(Ω,β,µ) ≤ G(u)‖x(u, ω)‖L2(Ω,β,µ)

µ0 - a.e. Furthermore, for almost all s ∈ S, k(t, s;ω) will be continuous in t
from S into L∞(Ω, β, µ).

Now, we define the random integral operator T on C(S,L2(Ω, β, µ)) by

(Tx)(t;ω) =

∫
S

k(t, s;ω)x(s;ω)dµ0(s) (5.2)

where the integral is a Bochner integral. Moreover, we have that for each t ∈ S,
(Tx)(t;ω) ∈ L2(Ω, β, µ) and that (Tx)(t;ω) is continuous in mean square by
Lebesgue dominated convergence theorem. So (Tx)(t;ω) ∈ C(S,L2(Ω, β, µ)).

Definition 21. ([37]). Let B and D be two Banach spaces. The pair (B,D) is
said to be admissible with respect to a random operator T (ω) if T (ω)(B) ⊂ D.

Lemma 5.1. ([30]). The linear operator T defined by (5.2) is continuous from
C(S,L2(Ω, β, µ)) into itself.
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Lemma 5.2. ([30] and [37]). If T is a continuous linear operator from C(S,L2(Ω, β, µ))
into itself and B,D ⊂ C(S,L2(Ω, β, µ)) are Banach spaces stronger than C(S,L2(Ω, β, µ))
such that (B,D) is admissible with respect to T, then T is continuous from B
into D.

Remark 5. ([30]). The operator T defined by (5.2) is a bounded linear operator
from B into D.

A random solution of equation (5.1) will mean a function x(t;ω) in C(S,L2(Ω, β, µ))
which satisfies the equation (5.1) µ− a.e.

We now prove the following theorem.

Theorem 5.3. We consider the stochastic integral equation (5.1) subject to the
following conditions
(a) B and D are Banach spaces stronger than C(S,L2(Ω, β, µ)) such that (B,D)
is admissible with respect to the integral operator defined by (5.2);
(b) x(t;ω)→ f(t, x(t;ω)) is an operator from the set
Q(ρ) = {x(t;ω) : x(t;ω) ∈ D, ‖x(t;ω)‖D ≤ ρ} into the space B satisfying

f(Ω×B) ⊂ D, f(Ω×D) ⊂ B; (5.3)

‖f(t, x(t;ω))− f(t, y(t;ω))‖B ≤ ‖x(t;ω)− y(t;ω)‖D, (5.4)

for all x(t;ω), y(t;ω) ∈ Q(ρ).
(c) h(t;ω) ∈ D.
Then there exists a unique random solution of (5.1) in Q(ρ), provided c(ω) < 1
and

‖h(t;ω)‖D + c(ω)‖f(t, 0)‖B ≤ ρ(1− c(ω)),

where c(ω) is the norm of T (ω).

Proof. Since the pair (B,D) is admissible with respect to the integral operator
defined by (5.2), then condition (5.3) is satisfied.

Define the operator U(ω) from Q(ρ) into D by

(Ux)(t;ω) = h(t;ω) +

∫
S

k(t, s;ω)f(s, x(s;ω))dµ0(s). (5.5)

Using conditions of the theorem, we have
‖(Ux)(t;ω)‖D ≤ ‖h(t;ω)‖D + c(ω)‖f(t, x(t;ω))‖B

≤ ‖h(t;ω)‖D + c(ω)‖f(t, 0)‖B
+c(ω)‖f(t, x(t;ω))− f(t; 0)‖B . (5.6)

Now from condition (5.4), we have

‖f(t, x(t;ω))− f(t; 0)‖B ≤ ‖x(t;ω)‖D. (5.7)

Using (5.7) in (5.6), we have

‖(Ux)(t;ω)‖D ≤ ‖h(t;ω)‖D + c(ω)‖f(t, 0)‖B + c(ω)‖x(t;ω)‖D ≤ ρ. (5.8)

Hence, (Ux)(t;ω) ∈ Q(ρ).
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Now, for x(t;ω), y(t;ω) ∈ Q(ρ) we have by condition (b)
‖(Ux)(t;ω)− (Uy)(t;ω)‖D = ‖

∫
S
k(t, s;ω)[f(s, x(s;ω))− f(s, y(s;ω))]dµ0(s)‖D

≤ c(ω)‖f(t, x(t;ω))− f(t, y(t;ω))‖B
≤ c(ω)‖x(t;ω)− y(t;ω)‖D.

Since c(ω) < 1, U is a contraction on Q(ρ). Therefore, by ([18], Theorem 2.2)
there exists a unique x∗(t;ω) ∈ Q(ρ) which is a fixed point of U. This means
that x∗(t;ω) is the unique random solution of equation (5.1). The proof of
Theorem 5.3 is completed. �
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