DOI QR코드

DOI QR Code

3종의 탄소계 흡착제를 이용한 크롬 제거 특성

Removal Properties of Chromium by 3 Different Carbon Adsorbents

  • 정용준 (부산가톨릭대학교 환경공학과) ;
  • 김태경 (부산가톨릭대학교 환경공학과)
  • Jung, Yong-Jun (Department of Environmental Engineering, Catholic University of Pusan) ;
  • Kim, Tae-Kyung (Department of Environmental Engineering, Catholic University of Pusan)
  • 투고 : 2017.03.14
  • 심사 : 2017.05.17
  • 발행 : 2017.05.31

초록

탄소나노튜브, 활성탄 및 층상이중수산화물 흡착제를 크롬 처리에 적용하여 흡착특성을 평가하였다. 비표면적은 활성탄이 가장 큰 $1028.1m^2{\cdot}g^{-1}$, 기공 부피는 탄소나노튜브가 가장 큰 $0.829cm^2{\cdot}g^{-1}$로 분석되었다. 탄소나노튜브와 활성탄은 99% 이상 탄소로 구성되어 있으나, 층상이중수산화물은 51.5%의 탄소, 41.8%의 산소 및 4.1%의 마그네슘 성분으로 구성되어 있었다. 크롬의 흡착 제거율은 흡착 시간이 경과함에 따라 활성탄이 약 80.2%로 가장 높았다. pH를 7로 설정한 이후 24시간 동안 흡착반응을 진행할 경우 28.4%의 크롬 제거율 나타냈고 이후에도 30.5%로 평형을 유지하여 가능한 산성 영역을 유지할 필요가 있는 것으로 나타났다.

This study was carried out to evaluate the possibility of Chromium removal by 3 different kinds of adsorbents, where activated carbon(AC), carbon nanotube(CNT) and layered double hydroxides(LDHs) were employed. The highest surface area was shown in AC and pore volume was in CNT which were $1028.1m^2{\cdot}g^{-1}$ and $0.829cm^2{\cdot}g^{-1}$, respectively. AC and CNT are composed of more than 99% carbon. AC has shown the possibility of chromium removal more than 80.2% under the acidic pH condition.

키워드

참고문헌

  1. Aggarwal, D., Goyal, M., Bansal, R. C. (1999). Adsorption of chromium by activated carbon from aqueous solution. Carbon. 37(12), pp. 1989-1997. https://doi.org/10.1016/S0008-6223(99)00072-X
  2. Demiral, H., Demiral, I., Tumsek, F., Karabacakoglu, B. (2008). Adsorption of chromium (VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal. 144(2), pp. 188-196. https://doi.org/10.1016/j.cej.2008.01.020
  3. Granados-Correa, F., JimEnez-Becerril, J. (2009). Chromium (VI) adsorption on boehmite. J. of hazardous materials. 162(2), pp. 1178-1184.
  4. Ho, YS (2004). Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics, 59(1), pp. 171-177. https://doi.org/10.1023/B:SCIE.0000013305.99473.cf
  5. Jeon JN, Jeon BY, Yoon YS, Jung IH (1997). Treatment of the chromium containing wastewater by electrolysis. Korean J. Sanitation. 12(3), pp. 131-138. [Korean Literature]
  6. Kim, YG, Park YG (2013). Mineralogical and geochemical changes during the reactio nof Cr(VI) with organic carbon. J. Miner. Soc. Korean., 26(3), pp. 151-160. [Korean Literature] https://doi.org/10.9727/jmsk.2013.26.3.151
  7. Kim, TG, Park, BS, Jung YJ (2007). Evaluating cadmium ion removal in aqueous solutions and cytotoxicity evaluation of carbon, synthesized layered double hydroxide, and multi-wall carbon nanotube. J. of Kor. Soc. on Wat. Env. 33(2), pp. 211-218. [Korean Literature] https://doi.org/10.15681/KSWE.2017.33.2.211
  8. Moon SY, Choi JH, Hong JS, Yu GG, Kim LH (2015). Evaluation on the adsorption and desorption capabilities of filter media applied to the nonpoint source pollutant management facilities. J. Wetlands Research. 17(3), pp. 228-236. [Korean Literature] https://doi.org/10.17663/JWR.2015.17.3.228
  9. Paek SB, Gil KG (2015). A study on the adsorption characteristic and safety assessment of railway subsoil material. J. Wetlands Research. 17(2), pp. 146-154. [Korean Literature] https://doi.org/10.17663/JWR.2015.17.2.146
  10. Park KS, Cheng J, Kim YC (2012). Sediments and design considerations in the forebay of stormwater wetland. J. Wetlands Research, 14(2), pp. 223-235. [Korean Literature] https://doi.org/10.17663/JWR.2012.14.2.223
  11. Seo, MS, Kim DS (2008). The characteristics of adsorption treatment of Cr(VI)-containing wastewater using Kudzu as the adsorbent. J. of Korean Inst. of Resources Recycling, 17(3), pp. 56-61. [Korean Literature]
  12. Shim, JW, Jung HH, Ryu SK (1995). The removal of Chromium (VI) on ACF packed column(I). Theories and applications of Chem. Eng., 1(1), pp. 229-232. [Korean Literature]
  13. Ucun, H., Bayhan, Y. K., Kaya, Y., Cakici, A., Algur, O. F. (2002). Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris. Bioresource technology. 85(2), pp. 155-158. https://doi.org/10.1016/S0960-8524(02)00086-X
  14. Yeo, IH, Jang JW, Kim LJ, Park JW (2012). Synthesis of multi-terminalized magnetic-cored dendrimer for adsorption of chromium and enhancement of magnetic recovery. J. of KSEE, 34(9), pp. 613-622. [Korean Literature]
  15. Yue, Z. R., Jiang, W., Wang, L., Toghiani, H., Gardner, S. D., Pittman, C. U. (1999). Adsorption of precious metal ions onto electrochemically oxidized carbon fibers. Carbon. 37(10), pp. 1607-1618. https://doi.org/10.1016/S0008-6223(99)00041-X