ON ZERO DISTRIBUTIONS OF SOME SELF-RECIPROCAL POLYNOMIALS WITH REAL COEFFICIENTS

Seungwoo Han ${ }^{\text {a }}$, Seon-Hong Kim ${ }^{\text {b,* }}$ and Jeonghun Park ${ }^{\text {c }}$

Abstract

If $q(z)$ is a polynomial of degree n with all zeros in the unit circle, then the self-reciprocal polynomial $q(z)+x^{n} q(1 / z)$ has all its zeros on the unit circle. One might naturally ask: where are the zeros of $q(z)+x^{n} q(1 / z)$ located if $q(z)$ has different zero distribution from the unit circle? In this paper, we study this question when $q(z)=(z-1)^{n-k}\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right)+(z+1)^{n-k}\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right)$, where $c_{j}>0$ for each j, and $q(z)$ is a 'zeros dragged' polynomial from $(z-1)^{n}+$ $(z+1)^{n}$ whose all zeros lie on the imaginary axis.

1. Introduction

It what follows, U denotes the unit circle and n is a positive integer. There is an extensive literature concerning zeros of sums of polynomials. Many papers and books([5], [6], [7]) have been written about these polynomials. An immediate question of sums of polynomials, $A+B=C$, is "given zeros of A and B, what zeros can be given for C?". For example, all (conjugate) zeros of the polynomial

$$
\begin{equation*}
\prod_{l=1}^{n}\left(z-r_{l}\right)+\prod_{l=1}^{n}\left(z+r_{l}\right) \tag{1}
\end{equation*}
$$

where $0<r_{1} \leq r_{2} \leq \cdots \leq r_{n}$, lie on the imaginary axis. For the proof and more, see [3]. Perhaps the most basic form of the polynomial (1) is

$$
\begin{equation*}
(z+1)^{n}+(z-1)^{n} \tag{2}
\end{equation*}
$$

where, by Fell [2], if all zeros of A and B lie in $[-1,1]$ with A, B monic and $\operatorname{deg} A=$ $\operatorname{deg} B=n$, then no zero of C can have modulus exceeding $\cot (\pi / 2 n)$, the largest zero of (2).

[^0]All polynomials in this paper will be assumed to have real coefficients. A polynomial $P(z)$ of degree n is said to be self-inversive if it satisfies $P(z)= \pm P^{*}(z)$, where $P^{*}(z)=z^{n} P(1 / z)$. In particular, if $P(z)=P^{*}(z), P(z)$ is called self-reciprocal. Many questions about the zeros of a family of self-reciprocal polynomials arise naturally in several areas of mathematics -number theory, coding theory, algebraic curves over finite fields, knot theory, but are also of independent interest. The zeros of a self-reciprocal polynomial either lie on U or occur in pairs conjugate to U. Since the class of self-inversive polynomials of degree n includes polynomials of degree n which have all their zeros on U, it is interesting to mention the condition for a selfreciprocal polynomial having all its zeros on U. For example, in [1], Chen proved a following sufficient and necessary condition for a self-inversive polynomial to have all its zeros on U.

Theorem 1. A necessary and sufficient condition for all the zeros of $f_{n}(z)=$ $\sum_{k=0}^{n} a_{k} z^{k}$ with complex coefficients to lie on U is that there is a polynomial $q_{n-l}(z)$ with all its zeros in or on U such that

$$
f_{n}(z)=z^{l} q_{n-l}(z)+e^{i \theta} q_{n-l}^{*}(z)
$$

for some nonnegative integer l and real θ.
If $q(z)$ is a polynomial of degree n with all zeros in U, then it follows from Theorem 1 that the self-reciprocal polynomial

$$
q(z)+q^{*}(z)
$$

has all its zeros on U. One might naturally ask: where are the zeros of $q(z)+q^{*}(z)$ located if $q(z)$ has different zero distribution from U ? For example, if $q(z)$ is the polynomial (2) whose all zeros are on the imaginary axis, then

$$
q(z)+q^{*}(z)= \begin{cases}2\left((z+1)^{n}+(z-1)^{n}\right) & \text { if } n \text { is even } \\ 2(z+1)^{n} & \text { if } n \text { is odd }\end{cases}
$$

In this case, for n even, all zeros of $q(z)+q^{*}(z)$ lie on the imaginary axis, and for n odd, they lie on U.
Suppose we drag the zero -1 , 1 of each summand of $q(z)$ in (2) to the outward in the same distance, respectively. More specifically, we consider the polynomial
$q(z)=(z-1)^{n-k}\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right)+(z+1)^{n-k}\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right)$, where $c_{j}>0$ for each j. Our interests in this paper are zero distributions of $q(z)+$ $q^{*}(z)$, and we will have some results about these. First, we start to study the
polynomial $p_{1}(z)+p_{1}^{*}(z)$, where

$$
p_{1}(z)=(z-1)^{n-1}(z-1-c)+(z+1)^{n-1}(z+1+c)
$$

is a 'one zero dragged' polynomial from $(z-1)^{n}+(z+1)^{n}$. In fact, this polynomial was studied in [4], and very similar results to Theorem 2 below were given there. But our proof here is different from that in [4], and moreover, we describe in detail what the circle is. The theorem below is interesting in that it does not seem obvious how to construct self-reciprocal polynomials with integer coefficients whose zeros all lie on one circle that is not the unit circle.

Theorem 2. Let for an odd integer n,

$$
p_{1}(z)=(z-1)^{n-1}(z-1-c)+(z+1)^{n-1}(z+1+c),
$$

where $c_{j}>0, c \neq 0,-1,-2$ for each j. Then all zeros of the self-reciprocal polynomial

$$
\frac{p_{1}(z)+p_{1}^{*}(z)}{z+1}
$$

lie on a circle that is not the unit circle. This circle has the center

$$
C\left(1+\frac{2}{|k|^{2}-1}, 0\right)
$$

and the radius

$$
r=\left|\frac{2|k|}{|k|^{2}-1}\right|,
$$

where $k=\left(\frac{c}{c+2}\right)^{\frac{1}{n-1}}>0$.
In the next theorem, we consider a generalized form of the polynomial $p_{1}(z)$ in Theorem 2.

Theorem 3. Let for even integers n and k,

$$
\begin{aligned}
p_{k}(z)= & (z-1)^{n-k}\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right) \\
& +(z+1)^{n-k}\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right),
\end{aligned}
$$

where $c_{j}>0$ for each j. If

$$
\begin{equation*}
\left(2+c_{1}\right) \cdots\left(2+c_{k}\right)>\sum_{\substack{r=2 \\ r \in v e n}}^{k}\left\{\sum_{1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq k} c_{i_{1}} \cdots c_{i_{r}} \frac{\left(2+c_{1}\right) \cdots\left(2+c_{k}\right)}{\left(2+c_{i_{1}}\right) \cdots\left(2+c_{i_{r}}\right)}\right\} \tag{3}
\end{equation*}
$$

then the self-reciprocal polynomial $p_{k}(z)+p_{k}^{*}(z)$ has all its zeros on the imaginary axis.

In the case of $c_{1}=c_{2}=\cdots=c_{k}=c,(3)$ becomes

$$
(2+c)^{k}>\sum_{\substack{r=2 \\ r \text { even }}}^{k}\left\{\sum_{\substack{1 \leq i_{1}<\cdots<i_{r} \leq k}} c^{r}(2+c)^{k-r}\right\}
$$

This is equivalent to

$$
2(2+c)^{k}>(2+c)^{k}+\sum_{\substack{r=2 \\ r \text { even }}}^{k}\left\{\sum_{\substack{1 \leq i_{1}<\cdots<i_{r} \leq k}} c^{r}(2+c)^{k-r}\right\}=\frac{(2 c+2)^{k}+2^{k}}{2}
$$

that is,

$$
u(c):=4(c+2)^{k}-(2 c+2)^{k}-2^{k}>0
$$

which is true since $u(0)>0$ and for $k=2$,

$$
u^{\prime}(c)=4 k(c+2)^{k-1}-2 k(2 c+2)^{k-1}=8>0
$$

This implies the following Corollary 4 that is the special case of $k=2$ of Theorem 3 .
Corollary 4. Let for an even integer n and $c>0$,

$$
p_{2}(z)=(z-1)^{n-2}(z-1-c)^{2}+(z+1)^{n-2}(z+1+c)^{2} .
$$

Then the self-reciprocal polynomial $p_{2}(z)+p_{2}^{*}(z)$ has all its zeros on the imaginary axis.

We recall the polynomial in Theorem 2 was

$$
p_{1}(z)=(z-1)^{n-1}(z-1-c)+(z+1)^{n-1}(z+1+c)
$$

where n is an odd integer, and the polynomial in Corollary 4 was

$$
p_{2}(z)=(z-1)^{n-2}(z-1-c)^{2}+(z+1)^{n-2}(z+1+c)^{2}
$$

where n is an even integer. By Theorem 2, the self-reciprocal polynomial $p_{1}(z)+p_{1}^{*}(z)$ has all its zeros other than -1 lies on a circle that is not the unit circle. Corollary 4 is unexpectedly surprising in that the self-reciprocal polynomial $p_{2}(z)+p_{2}^{*}(z)$ with one more dragging has all its zeros on the imaginary axis.

2. Proofs

In this section, we provide the proofs of our results.

Figure 1. Apollonius circle with $k=2$
Proof of Theorem 2. With notations of the theorem, the roots of $p_{1}(z) /(z+1)$ satisfy

$$
\left(\frac{z+1}{z-1}\right)^{n-1}=\frac{c}{c+2}
$$

Let $k=\left(\frac{c}{c+2}\right)^{1 /(n-1)}$ be a real number. Then $\left|\frac{z+1}{z-1}\right|=|k|$ whose locus is a circle of Apollonius that is the set of points with ratio of distances $|k|$ to two points $(-1,0)$ and $(1,0)$ in Figure 1. Let A and B denote the points that the Apollonius circle crosses the real axis.

Then

$$
A\left(\frac{|k|-1}{|k|+1}, 0\right), \quad B\left(\frac{|k|+1}{|k|-1}, 0\right)
$$

and the center and the radius of the circle

$$
C\left(1+\frac{2}{|k|^{2}-1}, 0\right), \quad r=\left|\frac{2|k|}{|k|^{2}-1}\right|,
$$

respectively.
For the proof of Theorem 3, we will need the following two theorems.
Theorem 5. (Cohn) Let $P(z)=\sum_{k=0}^{n} a_{k} z^{k} \in \mathbb{C}[z],\left(a_{n} \neq 0\right)$. Then all zeros of P lie on $|z|=1$ if and only if
(i) P is self-inversive,
(ii) all zeros of P^{\prime} lie in $|z| \leq 1$.

Moreover, if P is self-inversive and
$\tau=$ the number of zeros on $|z|=1$ (counted with multiplicity),
$\nu=$ the number of critical points in $|z| \leq 1$ (counted with multiplicity).
Then

$$
\tau=2(\nu+1)-n
$$

Theorem 6. (Cauchy) All zeros of $P^{\prime}(z)=n a_{n} z^{n-1}+(n-1) a_{n-1} z^{n-2}+\cdots+$ $2 a_{2} z+a_{1}$ lie in

$$
|z| \leq r
$$

where r is the positive root of the equation

$$
n\left|a_{n}\right| z^{n-1}-(n-1)\left|a_{n-1}\right| z^{n-2}-\cdots-2\left|a_{2}\right| z-\left|a_{1}\right|=0
$$

For the proofs of above two theorems, see [7, p. 230] and [6, p. 244].
Proof of Theorem 3. Let n and k be positive even integers with $n>k$, and

$$
P_{k}(z)=p_{k}(z)+p_{k}^{*}(z)
$$

where

$$
\begin{aligned}
p_{k}(z)= & (z-1)^{n-k}\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right) \\
& +(z+1)^{n-k}\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right)
\end{aligned}
$$

where $c_{j}>0$ for each j. Then

$$
\begin{aligned}
p_{k}^{*}(z)= & (z-1)^{n-k}\left(1-\left(1+c_{1}\right) z\right) \cdots\left(1-\left(1+c_{k}\right) z\right) \\
& +(z+1)^{n-k}\left(1+\left(1+c_{1}\right) z\right) \cdots\left(1+\left(1+c_{k}\right) z\right)
\end{aligned}
$$

and

$$
P_{k}(z)=\left\{(z+1)^{n-k}+(z-1)^{n-k}\right\}(A+C)+\left\{(z+1)^{n-k}-(z-1)^{n-k}\right\}(B+D)
$$

where

$$
\begin{aligned}
& A=\frac{\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right)+\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right)}{2} \\
& B=\frac{\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right)-\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right)}{2} \\
& C=\frac{\left(1+\left(1+c_{1}\right) z\right) \cdots\left(1+\left(1+c_{k}\right) z\right)+\left(1-\left(1+c_{1}\right) z\right) \cdots\left(1-\left(1+c_{k}\right) z\right)}{2} \\
& D=\frac{\left(1+\left(1+c_{1}\right) z\right) \cdots\left(1+\left(1+c_{k}\right) z\right)-\left(1-\left(1+c_{1}\right) z\right) \cdots\left(1-\left(1+c_{k}\right) z\right)}{2}
\end{aligned}
$$

Then the zeros of $P_{k}(z)$ satisfy

$$
\frac{(z+1)^{n-k}+(z-1)^{n-k}}{(z+1)^{n-k}-(z-1)^{n-k}}=-\frac{B+D}{A+C}
$$

Write

$$
l=\frac{(z+1)^{n-k}+(z-1)^{n-k}}{(z+1)^{n-k}-(z-1)^{n-k}}
$$

Then

$$
\left(\frac{z+1}{z-1}\right)^{n-k}=\frac{l+1}{l-1} \quad \text { and } \quad \frac{z+1}{z-1}=\left(\frac{l+1}{l-1}\right)^{\frac{1}{n-k}}=: L
$$

So

$$
\begin{equation*}
z=\frac{L+1}{L-1} \quad \text { and } \quad l=\frac{L^{n-k}+1}{L^{n-k}-1} \tag{4}
\end{equation*}
$$

Since

$$
l=\frac{L^{n-k}+1}{L^{n-k}-1}=-\frac{B+D}{A+C}
$$

we have

$$
(A+B+C+D) L^{n-k}+(A+C-B-D)=0
$$

Let

$$
f(L)=\left\{(A+B+C+D) L^{n-k}+(A+C-B-D)\right\}(L-1)^{k}
$$

that is,

$$
\begin{aligned}
f(L)= & {\left[\left\{\left(z+1+c_{1}\right) \cdots\left(z+1+c_{k}\right)+\left(1+\left(1+c_{1}\right) z\right) \cdots\left(1+\left(1+c_{k}\right) z\right)\right\} L^{n-k}\right.} \\
& \left.+\left(z-1-c_{1}\right) \cdots\left(z-1-c_{k}\right)+\left(1-\left(1+c_{1}\right) z\right) \cdots\left(1-\left(1+c_{k}\right) z\right)\right](L-1)^{k}
\end{aligned}
$$

By (4), $z=\frac{L+1}{L-1}$ and put this into the right hand side of above equation so that we have

$$
\begin{aligned}
f(L)= & \left\{\left(\left(2+c_{1}\right) L-c_{1}\right) \cdots\left(\left(2+c_{k}\right) L-c_{k}\right)\right. \\
& \left.+\left(\left(2+c_{1}\right) L+c_{1}\right) \cdots\left(\left(2+c_{k}\right) L+c_{k}\right)\right\} L^{n-k} \\
& +\left(c_{1} L-\left(c_{1}+2\right)\right) \cdots\left(c_{k} L-\left(c_{k}+2\right)\right)+\left(c_{1} L+\left(c_{1}+2\right)\right) \cdots\left(c_{k} L+\left(c_{k}+2\right)\right)
\end{aligned}
$$

We observe that $L^{n} f(1 / L)=f(L)$ since k is even, that is, $f(L)$ is self reciprocal. We will use Theorem ?? to show that all zeros of f lie on $|L|=1$. First, we may express $f(L)$ by the sum as follows:
$f(L)=2 E\left(L^{n}+1\right)+2 \sum_{\substack{r=2 \\ r \text { reven }}}^{k}\left\{\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k} c_{i_{1}} \cdots c_{i_{r}} \frac{E}{\left(2+c_{i_{1}}\right) \cdots\left(2+c_{i_{r}}\right)}\left(L^{n-r}+L^{r}\right)\right\}$,
where $E=\left(2+c_{1}\right) \cdots\left(2+c_{k}\right)$. Then

$$
\begin{aligned}
f^{\prime}(L)= & 2 n E L^{n-1} \\
& +2 \sum_{\substack{r=2 \\
r \text { venen }}}^{k}\left\{\sum _ { 1 \leq i _ { 1 } < \cdots < i _ { r } \leq k } c _ { i _ { 1 } } \cdots c _ { i _ { r } } \frac { E } { (2 + c _ { i _ { 1 } }) \cdots (2 + c _ { i _ { r } }) } \left((n-r) L^{n-r-1}\right.\right. \\
& \left.\left.+r L^{r-1}\right)\right\} .
\end{aligned}
$$

To use Theorem 5, we let

$$
\begin{aligned}
& g(L)=2 n E L^{n-1} \\
& -2 \sum_{\substack{r=2 \\
r \text { venen }}}^{k}\left\{\sum _ { 1 \leq i _ { 1 } < \cdots < i _ { r } \leq k } c _ { i _ { 1 } } \cdots c _ { i _ { r } } \frac { E } { (2 + c _ { i _ { 1 } }) \cdots (2 + c _ { i _ { r } }) } \left((n-r) L^{n-r-1}\right.\right. \\
& \\
& \left.\left.+r L^{r-1}\right)\right\} .
\end{aligned}
$$

Then

$$
\begin{aligned}
g^{\prime}(L)=2 n(n-1) E L^{n-2}-2 & \sum_{\substack{r=2 \\
r \text { even }}}^{k}\left\{\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k} c_{i_{1}} \cdots c_{i_{r}} \frac{E}{\left(2+c_{i_{1}}\right) \cdots\left(2+c_{i_{r}}\right)}\right. \\
& \left.\left((n-r)(n-r-1) L^{n-r-2}+r(r-1) L^{r-2}\right)\right\}
\end{aligned}
$$

and we have

$$
\begin{equation*}
g(0)=0, \quad g^{\prime}(0)=-4 \sum_{1 \leq i_{1}<i_{2} \leq k} c_{i_{1}} c_{i_{2}} \frac{E}{\left(2+c_{i_{1}}\right)\left(2+c_{i_{2}}\right)}<0 . \tag{6}
\end{equation*}
$$

But we observe that

$$
g(1)=2 n E-2 \sum_{\substack{r=2 \\ r \text { even }}}^{k}\left\{\sum_{\substack{1 \leq i_{1}<\cdots<i_{r} \leq k}} c_{i_{1}} \cdots c_{i_{r}} \frac{n E}{\left(2+c_{i_{1}}\right) \cdots\left(2+c_{i_{r}}\right)}\right\}>0
$$

is equivalent to
(7) $\left(2+c_{1}\right) \cdots\left(2+c_{k}\right)>\sum_{\substack{r=2 \\ r \text { even }}}^{k}\left\{\sum_{1 \leq i_{1}<\cdots<i_{r} \leq k} c_{i_{1}} \cdots c_{i_{r}} \frac{\left(2+c_{1}\right) \cdots\left(2+c_{k}\right)}{\left(2+c_{i_{1}}\right) \cdots\left(2+c_{i_{r}}\right)}\right\}$.

Hence if the inequlity (7) holds, $g(1)>0$ and so by $(6), g(L)=0$ has at least one zero α in the open interval $(0,1)$. In fact, this zero α is unique in the open interval $(0,1)$ by Theorem 6. It follows from Theorem 5 that all the zeros of $f(L)=0$ lie
on $|L| \leq \alpha<1$, where α is the positive zero of the equation $g(L)=0$. Hence by Theorem 5 , all zeros of f lie on $|L|=1$. But by (4),

$$
|L|=\left|\frac{z+1}{z-1}\right|=1
$$

where z was the zero of $P_{k}(z)$. One gets that the distances of z from the point -1 equals the distances of z from the point 1 . Thus, if z is to the left or to the right of the imaginary axis, one of these distances is bigger. This implies that z lies on the imaginary axis, which completes the proof.

References

1. W. Chen: On the polynomials with all their zeros on the unit circle. J. Math. Anal. Appl. 190 (1995), 714-724.
2. H.J. Fell: On the zeros of convex combinations of polynomials. Pacific J. Math. 89 (1980), 43-50.
3. S.-H. Kim: Sums of two polynomials with each having real zeros symmetric with each other. Proc. Indian Acad. Sci. 112 (2002), 283-288.
4. S.-H. Kim: Zeros of certain sums of two polynomials. J. Math. Anal. Appl. 260 (2001), 239-250.
5. M. Marden: Geometry of polynomials. American Mathematical Society, Providence, 1966.
6. Q.I. Rahman \& G. Schmeisser: Analytic theory of polynomials. Oxford University Press, Oxford, 2002.
7. T. Sheil-Small: Complex polynomials. Cambridge University Press, Cambridge, 2002.
${ }^{\text {a }}$ Gyeonggi Science High School, Suwon 16297, Korea
Email address: hansw0326@naver.com
${ }^{\text {b }}$ Department of Mathematics, Sookmyung Women's University, Seoul 04310, Korea
Email address: shkim17@sookmyung.ac.kr
${ }^{c}$ Gyeonggi Science High School, Suwon 16297, Korea
Email address: 99john99@naver.com

[^0]: Received by the editors November 29, 2016. Accepted May 08, 2017
 2010 Mathematics Subject Classification. Primary 26C10, Secondary 11B83.
 Key words and phrases. polynomials, self-recipocal polynomials, zeros, zero dragging.
 *Corresponding author.

