DOI QR코드

DOI QR Code

원통형 진동자 내부의 이중관 중심에서의 음압해석

An analysis of acoustic pressure in the center of double pipe inside of a cylindrical vibrator

  • 투고 : 2017.01.04
  • 심사 : 2017.05.30
  • 발행 : 2017.05.31

초록

유체로 채워진 원통형 압전진동자 내부에서 중심축으로 집속되는 음파에 대해 진동자 내부에 삽입된 동심원의 고체튜브가 음장분포에 미치는 영향을 해석하였다. 원통형 압전진동자의 내부로부터 방사된 음파는 유체매질을 지나 고체튜브의 벽면에서 반사 및 투과를 하여 중심축에 집속된다. 이때 고체튜브의 음향임피던스 및 두께 등에 의해 중심에 집속되는 음장 분포가 변한다. 이를 이론적으로 해석하기 위하여 각 매질에 대한 전달행렬을 도출하였고 이를 적용하여 중심축에서의 음압수준을 이론적으로 해석하였다. 여러 가지 두께를 갖는 아크릴 튜브에 대해서 중심축 상에서 측정한 음압수준의 변화는 이론해석의 결과와 잘 일치하였으며 중심에 형성되는 음압은 고체튜브의 두께에 따라 매우 민감하게 변화함을 확인하였다.

The effect of the concentric solid tube inserted inside the vibrator on the sound field distribution was analyzed for the sound waves focused on the center axis in the fluid - filled cylindrical piezoelectric transducer. The sound waves radiated from the inside of the cylindrical piezoelectric vibrator are transmitted through the fluid medium and are reflected or transmitted on the wall surface of the solid tube, and are focused on the central axis. At this time, the sound field distribution centered on the acoustic tube varies depending on the acoustic impedance and the thickness of the solid tube. In order to theoretically analyze this, the transfer matrix for each medium is derived, and the sound pressure level at the center axis is theoretically analyzed. For the acrylic tube with various thicknesses, the changing trend in the sound pressure level measured on the central axis agrees well with the result of the theoretical analysis, and it confirmed that the sound pressure formed at the center changes very sensitively with the thickness of the solid tube.

키워드

참고문헌

  1. D. Guzas, "Sound insulation of multi-layer cylindrical structures," ULTRAGARSAS (ULTRASOUND), 62, 39-41 (2007).
  2. T. Yang, R. Cao, X. Luo, and H. Ma, "Acoustic superscatterer and its multilayer realization," Appl. Phys. A, 99, 843-847 (2010). https://doi.org/10.1007/s00339-010-5609-0
  3. G. Kaduchak, D. Sinha, and D. Lizon, "Novel cylindrical, air coupled levitation/concentration device," Rev. Sci. Instrum. 73, 1332-1336 (2002). https://doi.org/10.1063/1.1448900
  4. S. Kogan, G. Kaduchak, and N. Shiha, "Acoustic concentration of particles in piezoelectric tubes: Theoretical modeling of the effect of cavity shape and symmetry breaking," J. Acoust. Soc. Am. 116, 1967-1974 (2004). https://doi.org/10.1121/1.1785613
  5. B. Sinha, T. Plona, S. Kostek, and S. Chang, "Axisymmetric wave propagation in fluid-loaded cylindrical shells. I: Theory," J. Acoust. Soc. Am. 92, 1132-1143 (1992). https://doi.org/10.1121/1.404040
  6. L. D. Lafleur and F. D. Shields, " Low-frequency propagation modes in a liquid-filled elastic tube waveguide," J. Acoust. Soc. Am. 97, 1435-1445 (1995). https://doi.org/10.1121/1.412981
  7. J. Sinai and R. Waag, "Ultrasonic scattering by two concentric cylinders," J. Acoust. Soc. Am. 83, 1728-1735 (1988). https://doi.org/10.1121/1.396505
  8. B. K. Sinha, T. J. Plona, S. Kostek, and S. K. Chang, "Axisymmetric wave propagation in fluid-loaded cylindrical shells. I: Theory," J. Acoust. Soc. Am. 92, 1132-1143 (1992). https://doi.org/10.1121/1.404040
  9. J. Sinai and R. Waag, "Ultrasonic scattering by two concentric cylinders," J. Acoust. Soc. Am. 83, 1728-1735 (1988). https://doi.org/10.1121/1.396505
  10. K. F. Graff, Wave Motion in Elastic Solids (Dover, New York, 1975), pp. 471.