DOI QR코드

DOI QR Code

Antifreeze Activity of Dimerized Type I Antifreeze Protein Fragments

Type I 결빙방지 단백질 조각 이량체의 결빙방지 활성

  • Kim, Hak Jun (Department of Chemistry, Pukyong National University)
  • Received : 2017.03.07
  • Accepted : 2017.04.10
  • Published : 2017.05.30

Abstract

Antifreeze proteins (AFPs) bind to ice crystals and inhibit their growth. AFPs are essential for the survival of organisms living in subzero environments. Type I AFP (AFP37) isolated from winter flounder is an ${\alpha}$-helical peptide of 37 residues long. In this study, we attempted to develop short AFP fragments with higher activity and solubility. We designed and synthesized N-terminal 15 and 21 residue-long AFPs, designated AFP15 and 21. Also dimerized AFP15 and 21, designated dAFP15N and dAFP21N, respectively, were generated through disulfide bonds between peptides containing CGG residues added to the N-terminus of AFP15 and AFP21 (designated AFP15N and 21N). Their helical contents and antifreeze activities were assessed using circular dichroism (CD) spectroscopy and a nanoliter osmometer, respectively. The helical content of AFP15 AFP21, AFP15N, AFP21N, dAFP15N and dAFP21N was 47, 48, 23.8, 28, 49.1, and 52%, respectively compared to that of wild type AFP37; the antifreeze activity was 8.4, 9.3, 0.05, 5.6, 12.1, 11.2% respectively, compared to that of wild type AFP37. Contrary to our anticipation, the dimerized peptides showed almost the same antifreeze activity as their monomeric counterparts. These results indicate that the dimerized peptides behave as monomeric peptides due to the high rotational freedom of disulfide bonds connecting two monomeric peptides. The star-shaped ice crystals generated by the peptides also demonstrated weak interaction between ice and peptides.

결빙방지 단백질(Antifreeze protein, AFP)은 얼음 결정에 결합하여 결정의 성장을 억제한다. AFP는 영하의 환경에서 서식하는 생물체의 생존에 필수적이다. 겨울 넙치에서 분리된 type I AFP (AFP37)는 37 개의 잔기를 가진 ${\alpha}$-나선 구조의 펩타이드이다. 본 연구에서는 활성과 수용성이 높은 짧은 AFP 조각을 개발하고자 시도하였다. 아미노-말단 15, 21 잔기의 AFP15와 21를 설계 및 합성하였다. 이들 펩타이드의 아미노-말단에 CGG를 도입한 AFP15N and 21N을 합성하고 이황화 결합을 유도함으로써 이량체 펩타이드인dAFP15N과dAFP21N을 합성하였다. 이들의 나선 함량과 결빙방지 활성을 circular dichroism (CD) 분광법과 나노리터 삼투압계로 각각 측정하였다. 합성된 펩타이드 AFP15 AFP21, AFP15N, AFP21N, dAFP15N, dAFP21N의 나선 구조 함량은 대조구인 AFP37의 49, 41, 23.8, 28, 47.9, 51.7% 수준을 보였다. 이들의 결빙방지 활성은 AFP37의 13, 7, 0.05, 5.6, 13, 11%로 나타났다. 예상과는 달리 이량체화된 펩타이드는 단량체와 비슷한 결빙방지 활성을 보였다. 이는 이량체 펩타이드가 하나의 펩타이드로 얼음과 결합하기 보다 두 개의 개별적 펩타이드로 작용함으로써 단량체와 같은 활성을 보인 것으로 생각된다. 또한 펩타이드들에 의한 별 모양의 얼음 결정 형성은 펩타이드와 얼음의 약한 결합을 시사한다.

Keywords

References

  1. Ahn, M., Murugan, N. R., Kim, E., Lee, J. H., Cheong, C., Kang, S. W., Park, H. J., Shin, S. Y., Kim, H. J. and Bang, J. K. 2012. Studies on the effect of number of sugar moiety in the antifreeze activity of homodimeric AFGPs. Bull. Kor. Chem. Soc. 33, 2411-2414. https://doi.org/10.5012/bkcs.2012.33.7.2411
  2. Ahn, M., Murugan, R. N., Shin, S. Y., Kim, H. J. and Bang, J. K. 2012. Peptoid-based Positional Scanning Derivatives: Revealing the Optimum Residue Required for Ice Recrystallization Inhibition Activity for Every Position in the AFGPs. Bull. Kor. Chem. Soc. 33, 3931-3932. https://doi.org/10.5012/bkcs.2012.33.12.3931
  3. Bang, J. K., Lee, J. H., Murugan, R. N., Lee, S. G., Do, H., Koh, H.Y., Shim, H. E., Kim, H. C. and Kim, H. J. 2013. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar. Drugs 11, 2013-2041. https://doi.org/10.3390/md11062013
  4. Chakrabartty, A., Ananthanarayanan, V. S. and Hew, C. L. 1989. Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions. J. Biol. Chem. 264, 11307-11312.
  5. Davies, P. L. and Hew, C. L. 1990. Biochemistry of fish antifreeze proteins. Faseb J. 4, 2460-2468. https://doi.org/10.1096/fasebj.4.8.2185972
  6. DeVries, A. L. 1969. Freezing resistance in fishes of the Antarctic penninsula. Antarct. J. US. 4, 104-105.
  7. DeVries, A. L., Komatsu, S. K. and Feeney, R. E. 1970. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J. Biol. Chem. 245, 2901-2908.
  8. DeVries, A. L. and Wohlschlag, D. E. 1969. Freezing resistance in some Antarctic fishes. Science 163, 1073-1075. https://doi.org/10.1126/science.163.3871.1073
  9. Do, H., Kim, S. J., Kim, H. J. and Lee, J. H. 2014. Structurebased characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Acta Crystallogr. D Biol. Crystallogr. 70, 1061-1073. https://doi.org/10.1107/S1399004714000996
  10. Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R. and Barnes, B. M. 2004. Antifreeze proteins in Alaskan insects and spiders. J. Insect Physiol. 50, 259-266. https://doi.org/10.1016/j.jinsphys.2003.12.003
  11. Fletcher, G. L., Hew, C. L. and Davies, P. L. 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359-390. https://doi.org/10.1146/annurev.physiol.63.1.359
  12. Hon, W. C., Griffith, M., Chong, P. and Yang, D. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 104, 971-980. https://doi.org/10.1104/pp.104.3.971
  13. Janech, M., Krell, A., Mock, T., Kang, J. S. and Raymond, J. 2006. Ice-binding proteins from sea ice diatoms (bacillariophyceae). J. Phycol. 42, 410-416. https://doi.org/10.1111/j.1529-8817.2006.00208.x
  14. Kim, H. J., Lee, H. J., Hur, B. Y., Lee, W. C., Park, S. H. and Koo, B. W. 2017. Marine Antifreeze Proteins, Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar. Drugs 15, 27. https://doi.org/10.3390/md15020027
  15. Knight, C. A., DeVries, A. L. and Oolman, L. D. 1984. Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308, 295-296. https://doi.org/10.1038/308295a0
  16. Kristiansen, E. and Zachariassen, K. E. 2005. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51, 262-280. https://doi.org/10.1016/j.cryobiol.2005.07.007
  17. Kun, H. and Mastai, Y. 2007. Activity of short segments of Type I antifreeze protein. Biopolymers 88, 807-814. https://doi.org/10.1002/bip.20844
  18. Lee, J. K., Park, K. S., Park, S., Park, H., Song, Y. H., Kang S. H. and Kim, H. J. 2010. An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60, 222-228. https://doi.org/10.1016/j.cryobiol.2010.01.002
  19. Lee, S. G., Koh, H. Y., Lee, J. H., Kang, S. H. and Kim, H. J. 2012. Cryopreservative effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells. Appl. Biochem. Biotechnol. 167, 824-834. https://doi.org/10.1007/s12010-012-9739-z
  20. Lee, S. G., Lee, J. H., Kang, S. and Kim, H. J. 2013. Marine Antifreeze Proteins, Types, Functions and Applications, pp. 667-694. In: Kim, S. K. (ed), Marine Proteins and Peptides: Biological Activities and Applicantion.. John Wiley & Sons, Ltd: Chichester, UK.
  21. Marshall, C. B., Chakrabartty, A. and Davies, P. L. 2005. Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of alpha-helices. J. Biol. Chem. 280, 17920-17929. https://doi.org/10.1074/jbc.M500622200
  22. Marshall, C. B., Fletcher, G. L. and Davies, P. L. 2004. Hyperactive antifreeze protein in a fish. Nature 429, 153. https://doi.org/10.1038/429153a
  23. Miura, K., Ohgiya, S., Hoshino, T., Nemoto, N., Suetake, T., Miura A., Spyracopoulos, L. and Tsuda, S. 2001. NMR analysis of type III antifreeze protein intramolecular dimer. Structural basis for enhanced activity. J. Biol. Chem. 276, 1304-1310. https://doi.org/10.1074/jbc.M007902200
  24. Nishimiya, Y., Ohgiya, S. and Tsuda, S. 2003. Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology. J. Biol. Chem. 278, 32307-32312. https://doi.org/10.1074/jbc.M304390200
  25. Park, K. S., Jung, W. S., Kim, H. J. and Shin, S. Y. 2010. Determination of the minimal sequence required for antifreeze activity of type I antifreeze protein (AFP37). Bull. Kor. Chem. Soc. 31, 3791-3793. https://doi.org/10.5012/bkcs.2010.31.12.3791
  26. Patel, S. N. and Graether, S. P. 2010. Increased flexibility decreases antifreeze protein activity. Protein Sci. 19, 2356-2365. https://doi.org/10.1002/pro.516
  27. Raymond, J. A. and DeVries, A. L. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA 74, 2589-2593. https://doi.org/10.1073/pnas.74.6.2589
  28. Raymond, J. A., Fritsen, C. and Shen, K. 2007. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol. 61, 214-221. https://doi.org/10.1111/j.1574-6941.2007.00345.x
  29. Sicheri, F. and Yang, D. S. 1995. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427-431. https://doi.org/10.1038/375427a0
  30. Sönnichsen, F. D., Davies, P. L. and Sykes, B. D. 1998. NMR structural studies on antifreeze proteins. Biochem. Cell Biol. 76, 284-293. https://doi.org/10.1139/o98-052
  31. Sun, T., Lin, F. H., Campbell, R. L., Allingham, J. S. and Davies, P. L. 2014. An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343, 795-798. https://doi.org/10.1126/science.1247407
  32. Yang, D. S., Sax, M., Chakrabartty, A. and Hew, C. L. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333, 232-237. https://doi.org/10.1038/333232a0
  33. Zhang, W. and Laursen, R. A. 1998. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J. Biol. Chem. 273, 34806-34812. https://doi.org/10.1074/jbc.273.52.34806