References
- Ahn, M., Murugan, N. R., Kim, E., Lee, J. H., Cheong, C., Kang, S. W., Park, H. J., Shin, S. Y., Kim, H. J. and Bang, J. K. 2012. Studies on the effect of number of sugar moiety in the antifreeze activity of homodimeric AFGPs. Bull. Kor. Chem. Soc. 33, 2411-2414. https://doi.org/10.5012/bkcs.2012.33.7.2411
- Ahn, M., Murugan, R. N., Shin, S. Y., Kim, H. J. and Bang, J. K. 2012. Peptoid-based Positional Scanning Derivatives: Revealing the Optimum Residue Required for Ice Recrystallization Inhibition Activity for Every Position in the AFGPs. Bull. Kor. Chem. Soc. 33, 3931-3932. https://doi.org/10.5012/bkcs.2012.33.12.3931
- Bang, J. K., Lee, J. H., Murugan, R. N., Lee, S. G., Do, H., Koh, H.Y., Shim, H. E., Kim, H. C. and Kim, H. J. 2013. Antifreeze peptides and glycopeptides, and their derivatives: potential uses in biotechnology. Mar. Drugs 11, 2013-2041. https://doi.org/10.3390/md11062013
- Chakrabartty, A., Ananthanarayanan, V. S. and Hew, C. L. 1989. Structure-function relationships in a winter flounder antifreeze polypeptide. I. Stabilization of an alpha-helical antifreeze polypeptide by charged-group and hydrophobic interactions. J. Biol. Chem. 264, 11307-11312.
- Davies, P. L. and Hew, C. L. 1990. Biochemistry of fish antifreeze proteins. Faseb J. 4, 2460-2468. https://doi.org/10.1096/fasebj.4.8.2185972
- DeVries, A. L. 1969. Freezing resistance in fishes of the Antarctic penninsula. Antarct. J. US. 4, 104-105.
- DeVries, A. L., Komatsu, S. K. and Feeney, R. E. 1970. Chemical and physical properties of freezing point-depressing glycoproteins from Antarctic fishes. J. Biol. Chem. 245, 2901-2908.
- DeVries, A. L. and Wohlschlag, D. E. 1969. Freezing resistance in some Antarctic fishes. Science 163, 1073-1075. https://doi.org/10.1126/science.163.3871.1073
- Do, H., Kim, S. J., Kim, H. J. and Lee, J. H. 2014. Structurebased characterization and antifreeze properties of a hyperactive ice-binding protein from the Antarctic bacterium Flavobacterium frigoris PS1. Acta Crystallogr. D Biol. Crystallogr. 70, 1061-1073. https://doi.org/10.1107/S1399004714000996
- Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R. and Barnes, B. M. 2004. Antifreeze proteins in Alaskan insects and spiders. J. Insect Physiol. 50, 259-266. https://doi.org/10.1016/j.jinsphys.2003.12.003
- Fletcher, G. L., Hew, C. L. and Davies, P. L. 2001. Antifreeze proteins of teleost fishes. Annu. Rev. Physiol. 63, 359-390. https://doi.org/10.1146/annurev.physiol.63.1.359
- Hon, W. C., Griffith, M., Chong, P. and Yang, D. 1994. Extraction and isolation of antifreeze proteins from winter rye (Secale cereale L.) leaves. Plant Physiol. 104, 971-980. https://doi.org/10.1104/pp.104.3.971
- Janech, M., Krell, A., Mock, T., Kang, J. S. and Raymond, J. 2006. Ice-binding proteins from sea ice diatoms (bacillariophyceae). J. Phycol. 42, 410-416. https://doi.org/10.1111/j.1529-8817.2006.00208.x
- Kim, H. J., Lee, H. J., Hur, B. Y., Lee, W. C., Park, S. H. and Koo, B. W. 2017. Marine Antifreeze Proteins, Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant. Mar. Drugs 15, 27. https://doi.org/10.3390/md15020027
- Knight, C. A., DeVries, A. L. and Oolman, L. D. 1984. Fish antifreeze protein and the freezing and recrystallization of ice. Nature 308, 295-296. https://doi.org/10.1038/308295a0
- Kristiansen, E. and Zachariassen, K. E. 2005. The mechanism by which fish antifreeze proteins cause thermal hysteresis. Cryobiology 51, 262-280. https://doi.org/10.1016/j.cryobiol.2005.07.007
- Kun, H. and Mastai, Y. 2007. Activity of short segments of Type I antifreeze protein. Biopolymers 88, 807-814. https://doi.org/10.1002/bip.20844
- Lee, J. K., Park, K. S., Park, S., Park, H., Song, Y. H., Kang S. H. and Kim, H. J. 2010. An extracellular ice-binding glycoprotein from an Arctic psychrophilic yeast. Cryobiology 60, 222-228. https://doi.org/10.1016/j.cryobiol.2010.01.002
- Lee, S. G., Koh, H. Y., Lee, J. H., Kang, S. H. and Kim, H. J. 2012. Cryopreservative effects of the recombinant ice-binding protein from the arctic yeast Leucosporidium sp. on red blood cells. Appl. Biochem. Biotechnol. 167, 824-834. https://doi.org/10.1007/s12010-012-9739-z
- Lee, S. G., Lee, J. H., Kang, S. and Kim, H. J. 2013. Marine Antifreeze Proteins, Types, Functions and Applications, pp. 667-694. In: Kim, S. K. (ed), Marine Proteins and Peptides: Biological Activities and Applicantion.. John Wiley & Sons, Ltd: Chichester, UK.
- Marshall, C. B., Chakrabartty, A. and Davies, P. L. 2005. Hyperactive antifreeze protein from winter flounder is a very long rod-like dimer of alpha-helices. J. Biol. Chem. 280, 17920-17929. https://doi.org/10.1074/jbc.M500622200
- Marshall, C. B., Fletcher, G. L. and Davies, P. L. 2004. Hyperactive antifreeze protein in a fish. Nature 429, 153. https://doi.org/10.1038/429153a
- Miura, K., Ohgiya, S., Hoshino, T., Nemoto, N., Suetake, T., Miura A., Spyracopoulos, L. and Tsuda, S. 2001. NMR analysis of type III antifreeze protein intramolecular dimer. Structural basis for enhanced activity. J. Biol. Chem. 276, 1304-1310. https://doi.org/10.1074/jbc.M007902200
- Nishimiya, Y., Ohgiya, S. and Tsuda, S. 2003. Artificial multimers of the type III antifreeze protein. Effects on thermal hysteresis and ice crystal morphology. J. Biol. Chem. 278, 32307-32312. https://doi.org/10.1074/jbc.M304390200
- Park, K. S., Jung, W. S., Kim, H. J. and Shin, S. Y. 2010. Determination of the minimal sequence required for antifreeze activity of type I antifreeze protein (AFP37). Bull. Kor. Chem. Soc. 31, 3791-3793. https://doi.org/10.5012/bkcs.2010.31.12.3791
- Patel, S. N. and Graether, S. P. 2010. Increased flexibility decreases antifreeze protein activity. Protein Sci. 19, 2356-2365. https://doi.org/10.1002/pro.516
- Raymond, J. A. and DeVries, A. L. 1977. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc. Natl. Acad. Sci. USA 74, 2589-2593. https://doi.org/10.1073/pnas.74.6.2589
- Raymond, J. A., Fritsen, C. and Shen, K. 2007. An ice-binding protein from an Antarctic sea ice bacterium. FEMS Microbiol. Ecol. 61, 214-221. https://doi.org/10.1111/j.1574-6941.2007.00345.x
- Sicheri, F. and Yang, D. S. 1995. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature 375, 427-431. https://doi.org/10.1038/375427a0
- Sönnichsen, F. D., Davies, P. L. and Sykes, B. D. 1998. NMR structural studies on antifreeze proteins. Biochem. Cell Biol. 76, 284-293. https://doi.org/10.1139/o98-052
- Sun, T., Lin, F. H., Campbell, R. L., Allingham, J. S. and Davies, P. L. 2014. An antifreeze protein folds with an interior network of more than 400 semi-clathrate waters. Science 343, 795-798. https://doi.org/10.1126/science.1247407
- Yang, D. S., Sax, M., Chakrabartty, A. and Hew, C. L. 1988. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature 333, 232-237. https://doi.org/10.1038/333232a0
- Zhang, W. and Laursen, R. A. 1998. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J. Biol. Chem. 273, 34806-34812. https://doi.org/10.1074/jbc.273.52.34806