DOI QR코드

DOI QR Code

Perilla frutescens Sprout Extracts Protected Against Cytokine-induced Cell Damage of Pancreatic RINm5F Cells via NF-κB Pathway

들깨 새싹 추출물의 췌장 RINm5F 세포에서 NF-κB 경로를 통한 사이토카인에 의한 손상 예방 효과

  • 김다혜 (재단법인 전주농생명소재연구원) ;
  • 김상준 (재단법인 전주농생명소재연구원) ;
  • 정승일 (재단법인 전주농생명소재연구원) ;
  • 유강열 (재단법인 전주농생명소재연구원) ;
  • 천춘진 (영농조합법인 애농) ;
  • 김장호 (전주대학교 생명자원융합과학과) ;
  • 김선영 (재단법인 전주농생명소재연구원)
  • Received : 2016.10.17
  • Accepted : 2017.03.23
  • Published : 2017.05.30

Abstract

Perilla frutescens (L.) Britton var. sprouts (PFS) is a plant of the labiatae family. The purpose of this work was to assess the preventive effects of PFS ethanolic extracts (PFSEs) on cytokine-induced ${\beta}$-cell damage. Cytokines, which are released by the infiltration of inflammatory cells around the pancreatic islets, are involved in the pathogenesis of type 1 diabetes mellitus. The combination of interleukin-$1{\beta}$ (IL-1), interferon-${\gamma}$ (IFN-${\gamma}$), and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) induced formation of reactive oxygen species (ROS). Accumulation of intracellular ROS led to ${\beta}$-cell dysfunction and apoptosis. PFSEs possess antioxidant activity and thus lead to downregulation of ROS generation. Cytokines decrease cell viability, stimulate the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), and induce the production of nitric oxide (NO). PFSEs prevented cytokine-induced cell viability in a dose-dependent manner. Incubation with PFSE resulted in significant reduction in cytokine-induced NO production that correlated with reduced levels of the iNOS and COX-2 protein expression. Furthermore, PFSE significantly decreased the activation of nuclear factor ${\kappa}B$ (NF-${\kappa}B$) by inhibition of $I{\kappa}B{\alpha}$ phosphorylation in RINm5F cells. In summary, our results suggest that the protective effects of PFSE might serve to counteract cytokine-induced ${\beta}$-cell destruction. Findings indicate that consumption of Perilla frutescens (L.) Britton var. sprouts alleviates hyperglycemia-mediated oxidative stress and pro-inflammatory cytokine-induced ${\beta}$-cell damage and thus has beneficial anti-diabetic effects.

들깨(Perilla frutescents (L.) Britton var.) 새싹은 꿀풀과에 속하는 1년생 초본이다. 본 연구의 목적은 들깨 새싹 에탄올 추출물이 사이토카인으로 유도된 췌장 베타 세포 손상에 대한 예방 효과를 평가하기 위함이다. 췌장 소도 주위에 염증 세포 침습으로 의해 분비되는 사이토카인은 1형 당뇨병의 발병원인에 해당된다. 인터루킨-$1{\beta}$ (IL-$1{\beta}$), 인터페론-${\gamma}$ (IFN-${\gamma}$), 종양괴사인자-${\alpha}$ (TNF-${\alpha}$) 등의 사이토카인은 활성산소 형성을 유도한다. 세포 내 활성산소 축적은 췌장 베타 세포 기능장애와 세포사멸을 이끈다. 들깨 새싹 추출물은 항산화 효과를 증가 시켰으며 활성산소 생성을 억제하였다. 사이토카인은 세포생존율을 감소시켰고, iNOS와 COX-2의 발현을 증가시키고 산화질소 생성을 유도하였다. 들깨 새싹 추출물은 사이토카인으로 유도된 세포생존을 농도 의존적으로 예방하였다. 또한, 사이토카인에 의한 산화질소 생성과 iNOS와 COX-2의 단백질 발현 증가를 억제하였다. 더 나아가 들깨 새싹 추출물은 췌장 베타 세포주(RIN-m5F)에서 $I{\kappa}B{\alpha}$ 인산화 억제를 통해서 NF-${\kappa}B$의 활성화를 상당히 감소시켰다. 요약하자면, 본 연구 결과는 들깨 새싹 추출물이 사이토카인으로 유도된 췌장 베타 세포 손상에 대한 보호 효과를 가지고 있다는 것이 확인되었다. 결과적으로 들깨 새싹은 혈당 증가에 의한 산화 스트레스와 염증성 사이토카인에 의한 베타 세포 손상을 완화하여 당뇨에 유익할 것으로 사료된다.

Keywords

References

  1. Arnao, M. B., Cano, A. and Acosta, M. 2001. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 73, 239-244. https://doi.org/10.1016/S0308-8146(00)00324-1
  2. Baeuerle, P. A. and Henkel, T. 1994. Function and activation of NF-kappaB in the immune system. Annu. Rev. Immunol. 12, 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
  3. Baldwin, A. S. Jr. 1996. The NF-${\kappa}$B and I${\kappa}$B proteins: new discoveries and insights. Annu. Rev. Immunol. 14, 649-681. https://doi.org/10.1146/annurev.immunol.14.1.649
  4. Baynes, J. W. 1991. Role of oxidative stress in development of complications in diabetes. Diabetes 40, 405-412.
  5. Bredt, D. S. and Snyder, S. H. 1994. Nitric oxide: a physiologic messenger molecule. Annu. Rev. Biochem. 63, 175-195. https://doi.org/10.1146/annurev.bi.63.070194.001135
  6. Celec, P. 2004. Nuclear factor kappa B-molecular biomedicine: the next generation. Biomed. Pharmacother. 58, 365-371. https://doi.org/10.1016/j.biopha.2003.12.015
  7. Eizirik, D. L., Flodström, M., Karlsen, A. E. and Welsh, N. 1996. The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39, 875-890.
  8. Eizirik, D. L., Sandler, S., Welsh, N., Cetkovic-Cvrlje, M., Nieman, A., Geller, D. A. and Hellerström, C. 1994. Cytokines suppress human islet function irrespective of their effects on nitric oxide generation. Clin. Investigator. 93, 1968. https://doi.org/10.1172/JCI117188
  9. Eppens, M. C., Craig, M. E., Cusumano, J., Hing, S., Chan, A. K., Howard, N. J. and Donaghue, K. 2006. Prevalence of diabetes complications in adolescents with type 2 compared with type 1 diabetes. Diabetes Care 29, 1300-1306. https://doi.org/10.2337/dc05-2470
  10. Evans, J. L., Goldfine, I. D., Maddux, B. A. and Grodsky, G. M. 2002. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 23, 599-622. https://doi.org/10.1210/er.2001-0039
  11. Fan, C., Li, Q., Ross, D. and Engelhardt, J. F. 2003. Tyrosine phosphorylation of $I{\kappa}B{\alpha}$ activates NF-${\kappa}$B through a redox- regulated c-Src-dependent mechanism following hypoxia/ reoxygenation. J. Biol. Chem. 278, 2072-2080. https://doi.org/10.1074/jbc.M206718200
  12. Foulis, A. K., Liddle, C. N., Farquharson, M. A., Richmond, J. A. and Weir, R. S. 1986. The histopathology of the pancreas in type I (insulin-dependent) diabetes mellitus: a 25-year review of deaths in patients under 20 years of age in the United Kingdom. Diabetologia 29, 267-274. https://doi.org/10.1007/BF00452061
  13. Guariguata, L., Whiting, D. R., Hambleton, I., Beagley, J., Linnenkamp, U. and Shaw, J. E. 2014. Global estimates of diabetes prevalence for 2013 and projections for 2035, Diabetes Res. Clin. Pract. 103, 137-149. https://doi.org/10.1016/j.diabres.2013.11.002
  14. Ha, K. H. and Kim, D. J. 2016. Current status of managing diabetes mellitus in Korea. Kor. J. Intern. Med. 31, 845-850. https://doi.org/10.3904/kjim.2016.253
  15. Heci, Y. 2001. Valuable ingredients form herb perilla: a mini review. Innov. Food Technol. 29, 32-33.
  16. Jacob, R. A. 1995. The integrated antioxidant system. Nutr. Res. 15, 755-766. https://doi.org/10.1016/0271-5317(95)00041-G
  17. Jeong, S. I., Kim, H. S., Jeon, I. H., Kang, H. J., Mok, J. Y., Cheon, C. J., Yu, H. H. and Jang, S. I. 2014. Antioxidant and anti-inflammatory effects of ethanol extracts from Perilla fructescens. Kor. J. Food Sci. Technol. 46, 87-93. https://doi.org/10.9721/KJFST.2014.46.1.87
  18. Kim, E. K., Kwon, K. B., Han, M. J., Song, M. Y., Lee, J. H., Lv, N. and Park, B. H. 2007. Inhibitory effect of Artemisia capillaris extract on cytokine-induced nitric oxide formation and cytotoxicity of RINm5F cells. Int. J. Mol. Med. 19, 535-540.
  19. Lee, J. K. and Ohnishi, O. 2003. Genetic relationships among cultivated types of Perilla frutescens and their weedy types in East Asia revealed by AFLP markers. Genet. Resour. Crop Evol. 50, 65-74. https://doi.org/10.1023/A:1022951002271
  20. Mandrup-Poulsen, T. 2003. Apoptotic signal transduction pathways in diabetes. Biochem. Pharmcaol. 66, 1433-1440. https://doi.org/10.1016/S0006-2952(03)00494-5
  21. Park, C. H., Kim, D. I., Shin, E. J., Lee, G. D., Kim, J. O., Kim, K. S. and Hong, J. H. 2008. Effect of Bulnesia sarmienti ethanol extract on plasma levels of glucose and lipid in streptozotocin induced diabetic rats. Kor. J. Food Sci. 40, 455-459.
  22. Rastogi, R. P., Singh, S. P., Hader, D. P. and Sinha, R. P. 2010. Detection of reactive oxygen species (ROS) by the oxidant- sensing probe 2', 7'-dichlorodihydrofluorescein diacetate in the cyanobacterium Anabaena variabilis PCC 7937. Biochem. Bioph. Res. Commun. 397, 603-607. https://doi.org/10.1016/j.bbrc.2010.06.006
  23. Southern, C., Schulster, D. and Green, I. C. 1990. Inhibition of insulin secretion by interleukin‐1${\beta}$ and tumour necrosis factor‐${\alpha}$ via an L‐arginine‐dependent nitric oxide generating mechanism. FEBS lett. 276, 42-44. https://doi.org/10.1016/0014-5793(90)80502-A
  24. Van den Berg, R., Haenen, G. R., van den Berg, H. and Bast, A. A. L. T. 1999. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66, 511-517. https://doi.org/10.1016/S0308-8146(99)00089-8
  25. Viatour, P., Merville, M. P., Bours, V. and Chariot, A. 2005. Phosphorylation of NF-kB and IkB proteins: implications in cancer and inflammation. Trends Biochem. Sci. 50, 43-52.
  26. Yu, H., Qiu, J. F., Ma, Li. J., Hu, Y. J., Li, P. and Wan, J. B. 2016. Phytochemical and phytopharmacological review of Perilla frutescens L. (Labiatae), a traditional edible-medicinal herb in China. Food Chem. Toxicol. doi:10.1016/j.fct.2016.11.023.

Cited by

  1. Perilla frutescens Sprout Extract Protect Renal Mesangial Cell Dysfunction against High Glucose by Modulating AMPK and NADPH Oxidase Signaling vol.11, pp.2, 2019, https://doi.org/10.3390/nu11020356