DOI QR코드

DOI QR Code

Circadian Clock Gene Per1 Mediates BMP2-induced Osteoblast Differentiation in MC3T3-E1 Cells

MC3T3-E1 세포에서 BMP2에 의한 조골세포의 분화에 일주기 유전자 Per1이 미치는 영향

  • Min, Hyeon-Young (Department of Biotechnology, college of Engineering, Daegu University) ;
  • Jang, Won-Gu (Department of Biotechnology, college of Engineering, Daegu University)
  • Received : 2016.10.05
  • Accepted : 2017.03.31
  • Published : 2017.05.30

Abstract

Bone morphogenetic proteins (BMPs) are multifunctional cytokines that play important roles in a variety of cellular functions. Among BMP family members, BMP2 efficiently promotes osteoblast differentiation through Smad-mediated runt-related transcription factor 2 (Runx2) expression. Several recent studies suggest that BMPs are associated with clock genes, in particular Bmal1. Bmal1 protein heterodimerizes with Clock protein and then induces period 1 (Per1) expression. However, the role of Per1 on osteoblast differentiation remains unclear. In this study, we investigated whether Per1 is involved in osteoblast differentiation. MC3T3-E1 cells were treated with BMP2 for induction of osteoblastic differentiation. Osteogenic maker gene and Per1 mRNA expression were measured using real-time PCR. Interestingly, BMP2 treatment induced Per1 mRNA expression in MC3T3-E1 cells. To further investigate the function of Per1 on osteoblast differentiation, MC3T3-E1 cells were transiently transfected with pCMV-Per1. Per1 overexpression increased Runx2 mRNA and protein levels. Also, mRNA expression and promoter activity of osteocalcin were upregulated by Per1 overexpression. To investigate the effect of interaction between Per1 and osteogenic condition, MC3T3-E1 cells were cultured in osteogenic medium containing ascorbic acid and ${\beta}$-glycerophosphate. Osteogenic medium-induced ALP staining level and mineralization were synergistically increased by overexpression of Per1. Taken together, these results demonstrate that Per1 is a positive regulator of osteoblast differentiation.

Bone morphogenetic proteins (BMPs)는 다양한 세포기능을 조절하는 중요한 사이토카인 중 하나이다. 최근 BMP와 일주기 유전자들이 연관되어 있다는 연구결과들이 보고되고 있지만 조골세포에서 일주기 유전자인 Per1의 역할은 아직 명확하지 않다. 본 연구에서는 조골세포 분화에서 Per1의 역할을 조사하였다. MC3T3-E1 세포에서 BMP2 처리에 의해 Per1 mRNA 발현과 luciferase 활성이 증가하는 것을 확인하였다. 또한 Per1 과발현 실험을 통해서 Per1 유전자가 Runx2, ALP, OC의 발현을 증가시켰으며 ascorbic acid와 ${\beta}$-glycerophosphate에 의한 ALP 염색과 석회화가 Per1 과발현에 의해 더욱 증가하는 것을 확인하였다. 이상의 결과는 일주기 리듬을 조절하는 Per1 유전자가 조골세포의 분화를 촉진하는 인자로 작용함을 시사한다.

Keywords

References

  1. Albrecht, U., Sun, Z. S., Eichele, G. and Lee, C. C. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064. https://doi.org/10.1016/S0092-8674(00)80495-X
  2. Bellows, C. G., Aubin, J. E. and Heersche, J. N. 1991. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14, 27-40. https://doi.org/10.1016/0169-6009(91)90100-E
  3. Bjarnason, G. A. and Jordan, R. 2000. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog. Cell Cycle Res. 4, 193-206.
  4. Borba, V. Z. and Manas, N. C. 2010. The use of PTH in the treatment of osteoporosis. Arq. Bras. Endocrinol. Metabol. 54, 213-219. https://doi.org/10.1590/S0004-27302010000200018
  5. Dibner, C., Schibler, U. and Albrecht, U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549. https://doi.org/10.1146/annurev-physiol-021909-135821
  6. Gallagher, J. C. and Sai, A. J. 2010. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 65, 301-307. https://doi.org/10.1016/j.maturitas.2010.01.002
  7. Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. 2010. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 12, 509-520. https://doi.org/10.1016/j.cmet.2010.10.005
  8. Hanyu, R., Hayata, T., Nagao, M., Saita, Y., Hemmi, H., Notomi, T., Nakamoto, T., Schipani, E., Knonenbery, H., Kaneko, K., Kurosawa, H., Ezura, Y. and Noda, M. 2011. Per-1 is a specific clock gene regulated by parathyroid hormone (PTH) signaling in osteoblasts and is functional for the transcriptional events induced by PTH. J. Cell Biochem. 112, 433-438. https://doi.org/10.1002/jcb.22957
  9. Hinoi, E., Ueshima, T., Hojo, H., Iemata, M., Takarada, T. and Yoneda, Y. 2006. Up-regulation of per mRNA expression by parathyroid hormone through a protein kinase A-CREB-dependent mechanism in chondrocytes. J. Biol. Chem. 281, 23632-23642. https://doi.org/10.1074/jbc.M512362200
  10. Hirai, T., Tanaka, K. and Togari, A. 2014. alpha1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4). J. Biol. Chem. 289, 17174-17183. https://doi.org/10.1074/jbc.M113.546135
  11. Hogan, B. L. 1996. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432-438. https://doi.org/10.1016/S0959-437X(96)80064-5
  12. Hogan, B. L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594. https://doi.org/10.1101/gad.10.13.1580
  13. Iida-Klein, A., Zhou, H., Lu, S. S., Levine, L. R., Ducayen- Knowles, M., Dempster, D. W., Nieves, J. and Lindsay, R. 2002. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J. Bone Miner. Res. 17, 808-816. https://doi.org/10.1359/jbmr.2002.17.5.808
  14. Kawai, M. and Rosen, C. J. 2010. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629-636. https://doi.org/10.1038/nrendo.2010.155
  15. Kim, E. J., Yoon, Y. S., Hong, S., Son, H. Y., Na, T. Y., Lee, M. H., Kang, H. J., Park, J., Cho, W. J., Kim, S. G., Koo, S. H., Park, H. G. and Lee, M. O. 2012. Retinoic acid receptor- related orphan receptor alpha-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology 55, 1379-1388. https://doi.org/10.1002/hep.25529
  16. Ko, C. H. and Takahashi, J. S. 2006. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15 Spec No 2, R271-277. https://doi.org/10.1093/hmg/ddl207
  17. Komori, T. 2005. Regulation of skeletal development by the Runx family of transcription factors. J. Cell Biochem. 95, 445-453. https://doi.org/10.1002/jcb.20420
  18. Lamia, K. A., Storch, K. F. and Weitz, C. J. 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172-15177. https://doi.org/10.1073/pnas.0806717105
  19. Lee, M. H., Kim, Y. J., Kim, H. J., Park, H. D., Kang, A. R., Kyung, H. M., Sung, J. H., Wozney, J. M., Kim, H. J. and Ryoo, H. M. 2003. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278, 34387-34394. https://doi.org/10.1074/jbc.M211386200
  20. Lee, M. H., Kim, Y. J., Yoon, W. J., Kim, J. I., Kim, B. G., Hwang, Y. S., Wozney, J. M., Chi, X. Z., Bae, S. C., Choi, K. Y., Cho, J. Y., Choi, J. Y. and Ryoo, H. M. 2005. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J. Biol. Chem. 280, 35579-35587. https://doi.org/10.1074/jbc.M502267200
  21. Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M. H., Lopez, J. P., Philipson, L. H., Bradfield, C. A., Crosby, S. D., JeBailey, L., Wang, X., Takahashi, J. S. and Bass, J. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631. https://doi.org/10.1038/nature09253
  22. Massague, J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791. https://doi.org/10.1146/annurev.biochem.67.1.753
  23. Min, H. Y., Kim, K. M., Wee, G., Kim, E. J. and Jang, W. G. 2016. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci. 162, 41-46. https://doi.org/10.1016/j.lfs.2016.08.002
  24. Reppert, S. M. and Weaver, D. R. 2001. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676. https://doi.org/10.1146/annurev.physiol.63.1.647
  25. Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B. and Fitzgerald, G. A. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377. https://doi.org/10.1371/journal.pbio.0020377
  26. Schmitt, J. M., Hwang, K., Winn, S. R. and Hollinger, J. O. 1999. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J. Orthop. Res. 17, 269-278. https://doi.org/10.1002/jor.1100170217
  27. Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr. and Reppert, S. M. 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261-1269. https://doi.org/10.1016/S0896-6273(00)80417-1
  28. Shimba, S., Ogawa, T., Hitosugi, S., Ichihashi, Y., Nakadaira, Y., Kobayashi, M., Tezuka, M., Kosuge, Y., Ishige, K., Ito, Y., Komiyama, K., Okamatsu-Ogura, Y., Kimura, K. and Saito, M. 2011. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6, e25231. https://doi.org/10.1371/journal.pone.0025231
  29. Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. 1997. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011. https://doi.org/10.1016/S0092-8674(00)80366-9
  30. Takahashi, J. S., Hong, H. K., Ko, C. H. and McDearmon, E. L. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775. https://doi.org/10.1038/nrg2430
  31. Takumi, T., Taguchi, K., Miyake, S., Sakakida, Y., Takashima, N., Matsubara, C., Maebayashi, Y., Okumura, K., Takekida, S., Yamamoto, S., Yagita, K., Yan, L., Young, M. W. and Okamura, H. 1998. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753-4759. https://doi.org/10.1093/emboj/17.16.4753
  32. Tasaki, H., Zhao, L., Isayama, K., Chen, H., Yamauchi, N., Shigeyoshi, Y., Hashimoto, S. and Hattori, M. A. 2015. Inhibitory role of REV-ERBalpha in the expression of bone morphogenetic protein gene family in rat uterus endometrium stromal cells. Am. J. Physiol. Cell Physiol. 308, C528-538. https://doi.org/10.1152/ajpcell.00220.2014
  33. Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M. and Sakaki, Y. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512-516. https://doi.org/10.1038/39086
  34. Trivedi, R., Goswami, R. and Chattopadhyay, N. 2010. Investigational anabolic therapies for osteoporosis. Expert Opin. Investig. Drugs 19, 995-1005. https://doi.org/10.1517/13543784.2010.501077
  35. Tsukamoto-Yamauchi, N., Terasaka, T., Iwasaki, Y. and Otsuka, F. 2015. Interaction of pituitary hormones and expression of clock genes modulated by bone morphogenetic protein-4 and melatonin. Biochem. Biophys. Res. Commun. 459, 172-177. https://doi.org/10.1016/j.bbrc.2015.02.100
  36. Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S. and Bass, J. 2005. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 1043-1045. https://doi.org/10.1126/science.1108750
  37. Wu, M., Deng, L., Zhu, G. and Li, Y. P. 2010. G Protein and its signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed) 15, 957-985. https://doi.org/10.2741/3656
  38. Zylka, M. J., Shearman, L. P., Weaver, D. R. and Reppert, S. M. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103-1110. https://doi.org/10.1016/S0896-6273(00)80492-4