References
- Albrecht, U., Sun, Z. S., Eichele, G. and Lee, C. C. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91, 1055-1064. https://doi.org/10.1016/S0092-8674(00)80495-X
- Bellows, C. G., Aubin, J. E. and Heersche, J. N. 1991. Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner. 14, 27-40. https://doi.org/10.1016/0169-6009(91)90100-E
- Bjarnason, G. A. and Jordan, R. 2000. Circadian variation of cell proliferation and cell cycle protein expression in man: clinical implications. Prog. Cell Cycle Res. 4, 193-206.
- Borba, V. Z. and Manas, N. C. 2010. The use of PTH in the treatment of osteoporosis. Arq. Bras. Endocrinol. Metabol. 54, 213-219. https://doi.org/10.1590/S0004-27302010000200018
- Dibner, C., Schibler, U. and Albrecht, U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu. Rev. Physiol. 72, 517-549. https://doi.org/10.1146/annurev-physiol-021909-135821
- Gallagher, J. C. and Sai, A. J. 2010. Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 65, 301-307. https://doi.org/10.1016/j.maturitas.2010.01.002
- Grimaldi, B., Bellet, M. M., Katada, S., Astarita, G., Hirayama, J., Amin, R. H., Granneman, J. G., Piomelli, D., Leff, T. and Sassone-Corsi, P. 2010. PER2 controls lipid metabolism by direct regulation of PPARgamma. Cell Metab. 12, 509-520. https://doi.org/10.1016/j.cmet.2010.10.005
- Hanyu, R., Hayata, T., Nagao, M., Saita, Y., Hemmi, H., Notomi, T., Nakamoto, T., Schipani, E., Knonenbery, H., Kaneko, K., Kurosawa, H., Ezura, Y. and Noda, M. 2011. Per-1 is a specific clock gene regulated by parathyroid hormone (PTH) signaling in osteoblasts and is functional for the transcriptional events induced by PTH. J. Cell Biochem. 112, 433-438. https://doi.org/10.1002/jcb.22957
- Hinoi, E., Ueshima, T., Hojo, H., Iemata, M., Takarada, T. and Yoneda, Y. 2006. Up-regulation of per mRNA expression by parathyroid hormone through a protein kinase A-CREB-dependent mechanism in chondrocytes. J. Biol. Chem. 281, 23632-23642. https://doi.org/10.1074/jbc.M512362200
- Hirai, T., Tanaka, K. and Togari, A. 2014. alpha1-adrenergic receptor signaling in osteoblasts regulates clock genes and bone morphogenetic protein 4 expression through up-regulation of the transcriptional factor nuclear factor IL-3 (Nfil3)/E4 promoter-binding protein 4 (E4BP4). J. Biol. Chem. 289, 17174-17183. https://doi.org/10.1074/jbc.M113.546135
- Hogan, B. L. 1996. Bone morphogenetic proteins in development. Curr. Opin. Genet. Dev. 6, 432-438. https://doi.org/10.1016/S0959-437X(96)80064-5
- Hogan, B. L. 1996. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 10, 1580-1594. https://doi.org/10.1101/gad.10.13.1580
- Iida-Klein, A., Zhou, H., Lu, S. S., Levine, L. R., Ducayen- Knowles, M., Dempster, D. W., Nieves, J. and Lindsay, R. 2002. Anabolic action of parathyroid hormone is skeletal site specific at the tissue and cellular levels in mice. J. Bone Miner. Res. 17, 808-816. https://doi.org/10.1359/jbmr.2002.17.5.808
- Kawai, M. and Rosen, C. J. 2010. PPARgamma: a circadian transcription factor in adipogenesis and osteogenesis. Nat. Rev. Endocrinol. 6, 629-636. https://doi.org/10.1038/nrendo.2010.155
- Kim, E. J., Yoon, Y. S., Hong, S., Son, H. Y., Na, T. Y., Lee, M. H., Kang, H. J., Park, J., Cho, W. J., Kim, S. G., Koo, S. H., Park, H. G. and Lee, M. O. 2012. Retinoic acid receptor- related orphan receptor alpha-induced activation of adenosine monophosphate-activated protein kinase results in attenuation of hepatic steatosis. Hepatology 55, 1379-1388. https://doi.org/10.1002/hep.25529
- Ko, C. H. and Takahashi, J. S. 2006. Molecular components of the mammalian circadian clock. Hum. Mol. Genet. 15 Spec No 2, R271-277. https://doi.org/10.1093/hmg/ddl207
- Komori, T. 2005. Regulation of skeletal development by the Runx family of transcription factors. J. Cell Biochem. 95, 445-453. https://doi.org/10.1002/jcb.20420
- Lamia, K. A., Storch, K. F. and Weitz, C. J. 2008. Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172-15177. https://doi.org/10.1073/pnas.0806717105
- Lee, M. H., Kim, Y. J., Kim, H. J., Park, H. D., Kang, A. R., Kyung, H. M., Sung, J. H., Wozney, J. M., Kim, H. J. and Ryoo, H. M. 2003. BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J. Biol. Chem. 278, 34387-34394. https://doi.org/10.1074/jbc.M211386200
- Lee, M. H., Kim, Y. J., Yoon, W. J., Kim, J. I., Kim, B. G., Hwang, Y. S., Wozney, J. M., Chi, X. Z., Bae, S. C., Choi, K. Y., Cho, J. Y., Choi, J. Y. and Ryoo, H. M. 2005. Dlx5 specifically regulates Runx2 type II expression by binding to homeodomain-response elements in the Runx2 distal promoter. J. Biol. Chem. 280, 35579-35587. https://doi.org/10.1074/jbc.M502267200
- Marcheva, B., Ramsey, K. M., Buhr, E. D., Kobayashi, Y., Su, H., Ko, C. H., Ivanova, G., Omura, C., Mo, S., Vitaterna, M. H., Lopez, J. P., Philipson, L. H., Bradfield, C. A., Crosby, S. D., JeBailey, L., Wang, X., Takahashi, J. S. and Bass, J. 2010. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature 466, 627-631. https://doi.org/10.1038/nature09253
- Massague, J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791. https://doi.org/10.1146/annurev.biochem.67.1.753
- Min, H. Y., Kim, K. M., Wee, G., Kim, E. J. and Jang, W. G. 2016. Bmal1 induces osteoblast differentiation via regulation of BMP2 expression in MC3T3-E1 cells. Life Sci. 162, 41-46. https://doi.org/10.1016/j.lfs.2016.08.002
- Reppert, S. M. and Weaver, D. R. 2001. Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647-676. https://doi.org/10.1146/annurev.physiol.63.1.647
- Rudic, R. D., McNamara, P., Curtis, A. M., Boston, R. C., Panda, S., Hogenesch, J. B. and Fitzgerald, G. A. 2004. BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biol. 2, e377. https://doi.org/10.1371/journal.pbio.0020377
- Schmitt, J. M., Hwang, K., Winn, S. R. and Hollinger, J. O. 1999. Bone morphogenetic proteins: an update on basic biology and clinical relevance. J. Orthop. Res. 17, 269-278. https://doi.org/10.1002/jor.1100170217
- Shearman, L. P., Zylka, M. J., Weaver, D. R., Kolakowski, L. F. Jr. and Reppert, S. M. 1997. Two period homologs: circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19, 1261-1269. https://doi.org/10.1016/S0896-6273(00)80417-1
- Shimba, S., Ogawa, T., Hitosugi, S., Ichihashi, Y., Nakadaira, Y., Kobayashi, M., Tezuka, M., Kosuge, Y., Ishige, K., Ito, Y., Komiyama, K., Okamatsu-Ogura, Y., Kimura, K. and Saito, M. 2011. Deficient of a clock gene, brain and muscle Arnt-like protein-1 (BMAL1), induces dyslipidemia and ectopic fat formation. PLoS One 6, e25231. https://doi.org/10.1371/journal.pone.0025231
- Sun, Z. S., Albrecht, U., Zhuchenko, O., Bailey, J., Eichele, G. and Lee, C. C. 1997. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 90, 1003-1011. https://doi.org/10.1016/S0092-8674(00)80366-9
- Takahashi, J. S., Hong, H. K., Ko, C. H. and McDearmon, E. L. 2008. The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nat. Rev. Genet. 9, 764-775. https://doi.org/10.1038/nrg2430
- Takumi, T., Taguchi, K., Miyake, S., Sakakida, Y., Takashima, N., Matsubara, C., Maebayashi, Y., Okumura, K., Takekida, S., Yamamoto, S., Yagita, K., Yan, L., Young, M. W. and Okamura, H. 1998. A light-independent oscillatory gene mPer3 in mouse SCN and OVLT. EMBO J. 17, 4753-4759. https://doi.org/10.1093/emboj/17.16.4753
- Tasaki, H., Zhao, L., Isayama, K., Chen, H., Yamauchi, N., Shigeyoshi, Y., Hashimoto, S. and Hattori, M. A. 2015. Inhibitory role of REV-ERBalpha in the expression of bone morphogenetic protein gene family in rat uterus endometrium stromal cells. Am. J. Physiol. Cell Physiol. 308, C528-538. https://doi.org/10.1152/ajpcell.00220.2014
- Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M. and Sakaki, Y. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389, 512-516. https://doi.org/10.1038/39086
- Trivedi, R., Goswami, R. and Chattopadhyay, N. 2010. Investigational anabolic therapies for osteoporosis. Expert Opin. Investig. Drugs 19, 995-1005. https://doi.org/10.1517/13543784.2010.501077
- Tsukamoto-Yamauchi, N., Terasaka, T., Iwasaki, Y. and Otsuka, F. 2015. Interaction of pituitary hormones and expression of clock genes modulated by bone morphogenetic protein-4 and melatonin. Biochem. Biophys. Res. Commun. 459, 172-177. https://doi.org/10.1016/j.bbrc.2015.02.100
- Turek, F. W., Joshu, C., Kohsaka, A., Lin, E., Ivanova, G., McDearmon, E., Laposky, A., Losee-Olson, S., Easton, A., Jensen, D. R., Eckel, R. H., Takahashi, J. S. and Bass, J. 2005. Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 1043-1045. https://doi.org/10.1126/science.1108750
- Wu, M., Deng, L., Zhu, G. and Li, Y. P. 2010. G Protein and its signaling pathway in bone development and disease. Front. Biosci. (Landmark Ed) 15, 957-985. https://doi.org/10.2741/3656
- Zylka, M. J., Shearman, L. P., Weaver, D. R. and Reppert, S. M. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20, 1103-1110. https://doi.org/10.1016/S0896-6273(00)80492-4