DOI QR코드

DOI QR Code

Photosynthesis and Growth Responses of Soybean (Glycine max Merr.) under Elevated CO2 Conditions

대기 중 CO2 상승 조건에서 재배되는 콩의 광합성과 생장 반응의 분석

  • Oh, Soonja (Agricultural Research Institute for Climate Change, National Institute of Horticultural and Herbal Science, RDA) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 오순자 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 고석찬 (제주대학교 생물학과)
  • Received : 2017.02.22
  • Accepted : 2017.04.10
  • Published : 2017.05.31

Abstract

The effects of elevated atmospheric $CO_2$ on growth and photosynthesis of soybean (Glycine max Merr.) were investigated to predict its productivity under elevated $CO_2$ levels in the future. Soybean grown for 6 weeks showed significant increase in vegetative growth, based on plant height, leaf characteristics (area, length, and width), and the SPAD-502 chlorophyll meter value (SPAD value) under elevated $CO_2$ conditions ($800{\mu}mol/mol$) compared to ambient $CO_2$ conditions ($400{\mu}mol/mol$). Under elevated $CO_2$ conditions, the photosynthetic rate (A) increased although photosystem II (PS II) photochemical activity ($F_v/F_m$) decreased. The maximum photosynthetic rate ($A_{max}$) was higher under elevated $CO_2$ conditions than under ambient $CO_2$ conditions, whereas the maximum electron transport rate ($J_{max}$) was lower under elevated $CO_2$ conditions compared to ambient $CO_2$ conditions. The optimal temperature for photosynthesis shifted significantly by approximately $3^{\circ}C$ under the elevated $CO_2$ conditions. With the increase in temperature, the photosynthetic rate increased below the optimal temperature (approximately $30^{\circ}C$) and decreased above the optimal temperature, whereas the dark respiration rate ($R_d$) increased continuously regardless of the optimal temperature. The difference in photosynthetic rate between ambient and elevated $CO_2$ conditions was greatest near the optimal temperature. These results indicate that future increases in $CO_2$ will increase productivity by increasing the photosynthetic rate, although it may cause damage to the PS II reaction center as suggested by decreases in $F_v/F_m$, in soybean.

Keywords

References

  1. Bagley, J., Rosenthal, D. M., Ruiz Vera, U. M., Siebers, M. H., Kumar, P., Ort, D. R., Bernacchi, C. J., 2015, The influence of photosynthetic acclimation to rising $CO_2$ and warmer temperatures on leaf and canopy photosynthesis models, Global Biogeochem. Cyc., 29, 194-206. https://doi.org/10.1002/2014GB004848
  2. Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T., Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., Wehner, M., 2013, Long-term climate change: Projections, commitments and irreversibility, In: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, B., Midgley, B. M. (eds.), Climate change 2013: The physical science basis - IPCC working group I contribution to AR5, Cambridge University Press, Cambridge, UK, 1029-1136.
  3. Dermody, O., Long, S. P., DeLucia, E. H., 2006, How does elevated $CO_2$ or ozone affect the leaf area index of soybean when applied independently?, New Phytol., 169, 145-155. https://doi.org/10.1111/j.1469-8137.2005.01565.x
  4. Farquhar, G. D., von Caemmerer, S., Berry, J. A., 1980, A Biochemical model of photosynthetic $CO_2$ assimilation in leaves of $C_3$ species, Planta, 149, 78-90. https://doi.org/10.1007/BF00386231
  5. Garruna-Hernandez, R., Monforte-Gonzalez, M., Canto-Aguilar, A., Vazquez-Flota, F., Orellana, R., 2013, Enrichment of carbon dioxide in the atmosphere increases the capsaicinoids content in Habanero peppers (Capsicum chinense Jacq.), J. Sci. Food Agric., 93, 1385-1388. https://doi.org/10.1002/jsfa.5904
  6. Gray, S. B., Brady, S. M., 2016, Plant developmental responses to climate change, Dev. Biol., 419, 64-77. https://doi.org/10.1016/j.ydbio.2016.07.023
  7. Hartman, G. L., West, E. D., Herman, T. K., 2011, Crops that feed the world 2, Soybean worldwide production use, and constraints caused by pathogens and pests, Food Secur., 3, 5-17. https://doi.org/10.1007/s12571-010-0108-x
  8. Kang, B. R., Kim, G. P., Kim, S. J., 2009, Characteristics of regional underground air distribution for various geothermal utillization, Rep. Jeju Environ. Res. Inst., 2, 223-237.
  9. Keutgen, N., Chen, K., Lenz, F., 1997, Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated $CO_2$, J. Plant Physiol., 150, 395-400. https://doi.org/10.1016/S0176-1617(97)80088-0
  10. Kimball, B. A., 1985, Adaptation of vegetation and management practices to a higher carbon dioxide world, US Department of Energy, Washington, USA, 185-204.
  11. Lee, S. G., Moon, J. H., Jang, Y. A., Kim, S. Y., Ko, K. D., 2009, Change of photosynthesis and cellular tissue under high $CO_2$ concentration and high temperature in radish, Kor. J. Hort. Sci. Technol., 27, 194-198.
  12. Leymarie, J., Lasceve, G., Vavasseur, A., 1999, Elevated $CO_2$ enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana, Plant Cell Environ., 22, 301-308. https://doi.org/10.1046/j.1365-3040.1999.00403.x
  13. Lobell, D. B., Asner, G. P., 2003, Climate and management contribution to recent trends in U.S. agricultural yields, Science, 299, 1032. https://doi.org/10.1126/science.1077838
  14. Marshall, B., Biscoe, P. V., 1980, A Model for $C_3$ leaves describing the dependence of net photosynthesis on irradiance, J. Exp. Botany, 31, 29-39. https://doi.org/10.1093/jxb/31.1.29
  15. Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Nietch, C. T., 1995, Increased growth efficiency of Quercus alba trees in a $CO_2$-enriched atmosphere, New Phytol., 131, 91-97. https://doi.org/10.1111/j.1469-8137.1995.tb03058.x
  16. Oh, S., Moon, K. H., Song, E. Y., Son, I. C., Koh, S. C., 2015, Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring, Hort. Environ. Biotechnol., 56, 159-166. https://doi.org/10.1007/s13580-015-0122-1
  17. Oh, S., Son, I. C., Wi, S. H., Song, E. Y., Koh, S. C., 2016, Photosynthetic and growth responses of Chinese cabbage to rising atmospheric $CO_2$, Kor. J. Agric. Forest Meteorol., 18, 357-365. https://doi.org/10.5532/KJAFM.2016.18.4.357
  18. Pinero, M. C., Houdusse, F., Garcia Mina, J. M., Garnica, M., del Amor, F. M., 2014, Regulation of hormonal responses of sweet pepper as affected by salinity and elevated $CO_2$ concentration, Physiol. planta., 151, 375-389. https://doi.org/10.1111/ppl.12119
  19. Poorter, H., 1993, Interspecific variation in the growth response of plants to an elevated ambient $CO_2$ concentration, Vegetatio, 104, 77-97.
  20. Sreeharsha, R. V., Sekhar, K. M., Reddy, A. R., 2015, Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated $CO_2$, Plant Sci., 231, 82-93. https://doi.org/10.1016/j.plantsci.2014.11.012
  21. Vuorinen, T., Reddy, G. V. P., Nerg, A. M., Holopainen, J. K., 2004, Monoterpene and herbivore-induced emissions from cabbage plants grown at elevated atmospheric $CO_2$ concentration, Atmos. Environ., 38, 675-682. https://doi.org/10.1016/j.atmosenv.2003.10.029
  22. Ward, J. K., Strain, B. R., 1999, Elevated $CO_2$ studies: Past, present and future, Tree Physiol., 19, 211-220. https://doi.org/10.1093/treephys/19.4-5.211