DOI QR코드

DOI QR Code

Maternal selenium-supplementation at various stages of periconception period: influence on murine blastocyst morphology and implantation status

  • Mamon, Mark Anthony C. (Biology Department, College of Science, De La Salle University) ;
  • Ramos, Gliceria B. (Biology Department, College of Science, De La Salle University)
  • Received : 2016.12.23
  • Accepted : 2017.02.17
  • Published : 2017.04.30

Abstract

Background: Selenium is one of the trace minerals whose deficiency is known to lead to complications of female reproduction. The identified gaps in researches regarding selenium and pregnancy include optimizing the dosage of selenium supplementation, timing of supplementation, finding the best form and type of selenium, and selenium administration combined with other antioxidants. Hence, this study was conceptualized to address one of the identified gaps, that is, to find out the best timing of selenium administration around the time of pregnancy. Specifically, this study aimed to assess the effects of maternal Selenium-supplementation, administered at various stages of periconception period, on murine blastocyst morphology, percent occurrence of good quality blastocysts, and implantation status. Methods: ICR female mice were randomly assigned into the unsupplemented group (Group I) receiving basal diet without selenium, and treatment groups given with $3.0{\mu}g$ selenium-supplement per day during pregestation only (Group II), pregestation-throughout-gestation (Group III) and gestation only (Group IV). Both blastocyst morphology and implantation status were assessed. Results: The morphometric measurements of blastocysts appeared to be unaffected by selenium-supplementation at different stages of periconception. Selenium-supplementation at pregestation only (Group II) and gestation only (Group IV) produced higher percent occurrence of good quality blastocysts and lower percent pre-implantation loss than Group III. Among all the treatment groups, Group III (Selenium-supplementation during pregestation-to-gestation) yielded the lowest quality blastocysts and highest percent pre-implantation loss. Conclusion: Maternal selenium-supplementation during pregestation and gestation stages of the periconception period yielded a high percent occurrence of good quality blastocysts and pre-implantation success.

Keywords

References

  1. Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev. 2011;2011:1-12. Article ID 841749.
  2. Palmieri C, Szarek J. Effect of maternal selenium supplementation on pregnancy in humans and livestock. J Elementol. 2011;16:143-56.
  3. Mistry HD, Pipkin FB, Redman CWG, Poston L. Selenium in reproductive health. Am J Obstet Genecol. 2012;206:21-30. https://doi.org/10.1016/j.ajog.2011.07.034
  4. Ostadalova I. Biological effects of selenium compounds with a particular attention to the ontogenetic development. Physiol Res. 2012;61:S19-34.
  5. Rayman MP. Selenium and human health. Lancet. 2012;379:1256-68. https://doi.org/10.1016/S0140-6736(11)61452-9
  6. Mehdi Y, Hornick JL, Istasse L, Dufrasne I. Selenium in the environment, metabolism, and involvement on body functions. Molecules. 2013;18:3292-311. https://doi.org/10.3390/molecules18033292
  7. Ramos GB, Sia AJ, Callejas NAN, Revilla CJP, Alfonso N, Sia SG. Pregestational and gestational maternal selenium - supplement: influence on ethanol - induced dysmorphogenesis in murine postimplantation embryos. Asian j exp biol sci. 2013;4:361-8.
  8. Tinggi U. Selenium: its role as antioxidant in human health. Environ Health Prev Med. 2008;13:102-8. https://doi.org/10.1007/s12199-007-0019-4
  9. Hefnawy AEG, Perez JLT. The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res. 2010;89:185-92. https://doi.org/10.1016/j.smallrumres.2009.12.042
  10. Ufer C, Wang CC. The roles of glutathione peroxidases during embryo development. Front Mol Neurosci. 2011;4:1-14.
  11. Vanderlelie J, Perkins AVA. Selenium and preeclampsia. Pregnancy Hypertens. 2011;1:213-24. https://doi.org/10.1016/j.preghy.2011.07.001
  12. Hovdenak N, Haram K. Influence of mineral and vitamin supplements on pregnancy outcome. Eur J Obstet Gynecol Reprod Biol. 2012;164:127-32. https://doi.org/10.1016/j.ejogrb.2012.06.020
  13. Pieczynska J, Grajeta H. The role of selenium in human conception and pregnancy. J Trace Elem Med Biol. 2015;29:31-8. https://doi.org/10.1016/j.jtemb.2014.07.003
  14. Cetin I, Berti C, Calabrese S. Role of micronutrients in periconceptional period. Hum Reprod Update. 2010;16:80-95. https://doi.org/10.1093/humupd/dmp025
  15. Berti C, Biesalski HK, Gartner R, Lapillonne A, Pietrzik K, Poston L, Redman C, Koletzko B, Cetin I. Micronutrients in pregnancy: current knowledge and unresolved questions. Clin Nutr. 2011;30:689-701. https://doi.org/10.1016/j.clnu.2011.08.004
  16. Hambidge KM, Krebs NF, Westcott JE, Garces A, Goudar SS, Kodkany BS, Pasha O, Tshefu A, Bose CL, Figueroa L, Goldenberg RL, Derman RJ, Friedman JE, Frank DN, McClure EM, Stolka K, Das A, Thomas MK, Sundberg S. Preconception Trial Group, Preconception maternal nutrition: a multi-site randomized controlled trial. BMC Pregnancy Childbirth. 2014;14:1-16. https://doi.org/10.1186/1471-2393-14-1
  17. Sahni S. Guidelines for Care and Use of Animals in Scientific Research. Indian National Science Academy: New Delhi; 2000.
  18. oudani N, Amara IB, Sefi M, Boudawara T, Zeghal N. Effects of selenium on chromium (VI) - induced hepatotoxicity in adult rats. Exp Toxicol Pathol. 2011;63:541-8. https://doi.org/10.1016/j.etp.2010.04.005
  19. Matos FD, Rocha JC, Nogueira MFG. A method using artificial neural networks to morphologically assess mouse blastocyst quality. J Anim Sci Technol. 2014;56:1-10. https://doi.org/10.1186/2055-0391-56-1
  20. Molina I, Ibañez EL, Pertusa J, Debon A, Sanchis JVM, Pellicer A. A minimally invasive methodology based on morphometric parameters for day 2 embryo quality assessment. Reprod Biomed. 2014;29:470-80. https://doi.org/10.1016/j.rbmo.2014.06.005
  21. Bo GA, Mapletoft RJ. Evaluation and classification of bovine embryos. Anim Reprod. 2013;10:344-8.
  22. Baczkowski T, Kurzawa R, Glabowski W. Methods of embryo scoring in in vitro fertilization. Reprod Biol. 2004;4:5-22.
  23. Kovacic B, Vlaisavljevic V. Importance of blastocyst morphology in selection for transfer. In: Wu B, editor. Advances in Embryo Transfer. Biochemistry, Genetics, and Molecular Biology. Rijeka: InTech; 2012. p. 161-76.
  24. Racowsky C, Vernon M, Mayer J, Ball GD, Behr B, Pomeroy KO, Wininger D, Gibbons W, Conaghan J, Stern JE. Standardization of grading embryo morphology. J Assist Reprod Genet. 2010;27:437-9. https://doi.org/10.1007/s10815-010-9443-2
  25. Bindali BB, Kaliwal BB. Anti - implantation effect of a carbamate fungicide Mancozeb in Albino mice. Ind Health. 2002;40:191-7. https://doi.org/10.2486/indhealth.40.191
  26. Ambali SF, Imana HO, Shittu M, Kawu MU, Salami SO, Ayo JO. Anti-implantation effect of chlorpyrifos in Swiss albino mice. Agric Biol J N Am. 2010;1:152-5.
  27. Yeh J, Kim BS, Peresie J. Reproductive toxic effects of cisplatin and its modulation by the antioxidant sodium 2 - mercaptoethanesulfonate (mesna) in female rats. Reprod Bio Insights. 2011;5:17-27.
  28. Zhao Y, Wang X, Shi W, Zhong X. Anti-abortive effect of quercetin and bornyl acetate on macrophages and IL-10 in uterus of mice. Afr J Biotechnol. 2011;10:8675-82. https://doi.org/10.5897/AJB11.939
  29. Yu WJ, Kim JC, Chung MK. Lack of dominant lethality in mice following 1-bromopropane treatment. Mutat Res. 2008;652:81-7. https://doi.org/10.1016/j.mrgentox.2008.01.001
  30. Boskabadi H, Omran FR, Tara F, Rayman MP, Mobarhan MG, Sahebkar A, Tavallaie S, Shakeri MT, Alamdari DH, Kiani M, Razavi BS, Oladi M, Ferns G. The effect of maternal selenium supplementation on pregnancy outcome and the level of oxidative stress in neonate. Iran Red Crescent Med J. 2010;12:254-9.
  31. Cebovic TN, Maric D, Nikolic A, Mikic AN. Antioxidant status in normal pregnancy and preeclampsia upon multivitamin-mineral supplementation in the region of Vojvodina. Int J Biosci Biochem Bioinforma. 2013;3:138-44.
  32. Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Curr Opin Obstet Gynecol. 2006;18:325-32. https://doi.org/10.1097/01.gco.0000193003.58158.4e
  33. Gupta S, Agarwal A, Banerjee J, Alvarez JG. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet Gynecol Surv. 2007;62:335-47. https://doi.org/10.1097/01.ogx.0000261644.89300.df
  34. Agarwal A, Mellado AA, Premkumar BJ, Shaman A, Gupta S. The effects of oxidative stress on female reproduction: a review. Reprod Biol Endocrinol. 2012;10:1-31. https://doi.org/10.1186/1477-7827-10-1
  35. Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284:723-7. https://doi.org/10.1074/jbc.R800045200
  36. Yang HW, Hwang KJ, Kwon HC, Kim HS, Choi KW, Oh KS. Detection of reactive oxygen species (ROS) and apoptosis in human fragmented embryos. Hum Reprod. 1998;13:998-1002. https://doi.org/10.1093/humrep/13.4.998
  37. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surrounding. Hum Reprod Update. 2001;7:175-89. https://doi.org/10.1093/humupd/7.2.175
  38. Agarwal A, Allamaneni SSR. Oxidants and antioxidants in human fertility. Middle East Fertil Soc J. 2004;9:187-97.
  39. Cebral E, Carrasco I, Vantman D, Smith R. Preimplantation embryotoxicity after mouse embryo exposition to reactive oxygen species. Biocell. 2007;31:51-9.
  40. Sobrinho DBG, Oliveira JBA, Petersen CG, Mauri AL, Silva LF, Massaro FC, Baruffi RL, Cavagna M, Franco Jr JG. IVF/ICSI outcomes after culture of human embryos at low oxygen tension: a meta-analysis. Reprod Biol Endocrinol. 2011;9:1-11. https://doi.org/10.1186/1477-7827-9-1
  41. Mezes M, Balogh K. Prooxidant mechanisms of selenium toxicity - a review. Acta Biol Szeged. 2009;53:15-8.
  42. Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R. Selenium in human health and disease. Antioxid Redox Signal. 2011;14:1337-83. https://doi.org/10.1089/ars.2010.3275
  43. Jansen E, Viezeliene D, Beekhof P, Gremmer E, Rodovicius H, Sadauskiene I, Ivanov L. Biomarkers of selenium toxicity after sub-acute exposure in mice. J Mol Biomark Diagn. 2013;4:1-5.
  44. Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H. Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol. 2014;9:1-9. https://doi.org/10.1186/1748-717X-9-1
  45. Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, Cappuccio FP, Ceriello A, Reid ME. Effects of long-term selenium supplementation on the incidence of type 2 diabetes. Ann Intern Med. 2007;147:217-23. https://doi.org/10.7326/0003-4819-147-4-200708210-00175
  46. Steinbrenner H, Speckmann B, Pinto A, Sies H. High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr. 2011;48:40-5.
  47. Alarcon MN, Vique CC. Selenium in food and the human body: a review. Sci Total Environ. 2008;400:115-41. https://doi.org/10.1016/j.scitotenv.2008.06.024
  48. Juniper DT, Phipps RH, Morales ER, Bertin G. Effects of dietary supplementation with selenium enriched yeast or sodium selenite on selenium tissue distribution and meat quality in lambs. Anim Feed Sci Tech. 2009;149:228-39. https://doi.org/10.1016/j.anifeedsci.2008.06.009
  49. Schrauzer GN. Selenomethionine: A review of its nutritional significance, metabolism, and toxicity. J Nutr. 2000;130:1653-6. https://doi.org/10.1093/jn/130.7.1653
  50. Thomson CD, Packer MA, Butler JA, Duffield AJ, O'Donaghue KL, Whanger PD. Urinary selenium and iodine during pregnancy and lactation. J Trace Elem Med Biol. 2001;14:210-7. https://doi.org/10.1016/S0946-672X(01)80004-3
  51. Bugel S, Larsen EH, Sloth JJ, Flytlie K, Overvad K, Steenberg LC, Moesgaard S. Absorption, excretion, and retention of selenium from a high selenium yeast in men with a high intake of selenium. Food Nutr Res. 2008;52:1-8.
  52. Schobel HP. Pregnancy-induced alterations in renal function. Kidney Blood Press Res. 1998;21:274-6. https://doi.org/10.1159/000025876
  53. Cheung KL, Lafayette RA. Renal physiology of pregnancy. Adv Chronic Kidney Dis. 2013;20:209-14. https://doi.org/10.1053/j.ackd.2013.01.012
  54. Constantine MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:1-5.
  55. Parshad RK. Effects of selenium toxicity on oestrous cyclicity, ovarian follicles, ovulation, and foetal survival in rats. Indian J Exp Biol. 1999;37:615-7.
  56. Zhang S, Lin H, Kong S, Wang S, Wang H, Wang H, Armant DR. Physiological and molecular determinant of embryo implantation. Mol Aspects Med. 2013;34:939-80. https://doi.org/10.1016/j.mam.2012.12.011
  57. Sekhon LH, Gupta S, Kim Y, Agarwal A. Female infertility and abortion. Curr Womens Health Rev. 2010;6:84-95. https://doi.org/10.2174/157340410791321381
  58. Riesewijk A, Martin J, van Os R, Horcajadas JA, Polman J, Pellicer A, Mosselman S, Simon C. Gene expression profiling of human endometrial receptivity on days LH + 2 versus LH + 7 by microarray technology. Mol Hum Reprod. 2003;9:253-64. https://doi.org/10.1093/molehr/gag037
  59. Pizarro AT, Figueroa P, Brito J, Marin JC, Munroe DJ, Croxatto HB. Endometrial gene expression reveals compromised progesterone signaling in women refractory to embryo implantation. Reprod Biol Endocrinol. 2014;12:1-15. https://doi.org/10.1186/1477-7827-12-1
  60. Alonso MR, Blesa D, Simon C. The genomics of the human endometrium. Biochim Biophys Acta. 1822;2012:1931-42.
  61. Kind K. Diet around conception and during pregnancy - effects on fetal and neonatal outcomes. Reprod Biomed Online. 2006;12:532-41. https://doi.org/10.1016/S1472-6483(10)61178-9

Cited by

  1. Oxidative Stress as Cause, Consequence, or Biomarker of Altered Female Reproduction and Development in the Space Environment vol.19, pp.12, 2018, https://doi.org/10.3390/ijms19123729
  2. Selenium, Selenoproteins, and Female Reproduction: A Review vol.23, pp.12, 2017, https://doi.org/10.3390/molecules23123053
  3. Maternal Selenium and Developmental Programming vol.8, pp.5, 2019, https://doi.org/10.3390/antiox8050145
  4. Dietary Selenium Supplementation Ameliorates Female Reproductive Efficiency in Aging Mice vol.8, pp.12, 2017, https://doi.org/10.3390/antiox8120634
  5. Thyroid Disease, Pregnancy, and Selenium Supplementation vol.10, pp.4, 2021, https://doi.org/10.1007/s13669-021-00314-3