References
- Arthur, S., 1959, Some studies in machine learning using the game of checkers, IBM Journal, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210
- Jee, J. B., Lee, S. W., Choi, Y. J., Lee, K. T., 2012, The generation of typical meteorological year for research of the solar energy on the Korean Peninsula, New & Renewable Energy, 8(2), 12-23.
- Kim, H. Y., Kim, J., 2016, Prediction correlation of solar insolation using relationships between meteorological data and solar insolation in 2012(I), Journal of KSES, 36(1), 1-9.
- Lee, K. T., Zo, I. S., Jee, J. B., Choi, Y. J., 2011, Temporal and spatial distributions of the surface solar radiation by spatial resolutions on Korea Peninsula, New & Renewable Energy, 7(1), 22-28. https://doi.org/10.7849/ksnre.2011.7.1.022
- Lee, Y. M., Bae, J. H., Park, D. B., 2016, A Study on fog forecasting method through data mining techniques in Jeju, Journal of Environmental Science International, 25(3), 417-424. https://doi.org/10.5322/JESI.2016.25.3.417
- Martin, L., Zarzalejo, L. F., Polo, J., Navarro, A., Marchante, R., Cony, M., 2010, Benchmarking of different approaches to forecast solar irradiance, Solar Energy, 84(10), 1772-1781. https://doi.org/10.1016/j.solener.2010.07.002
- Mellit, A., Massi, P. A., 2010, A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy, Solar Energy, 84(5), 807-821. https://doi.org/10.1016/j.solener.2010.02.006
- Voyant, C., Randimivololona, P., Nivet, M. L., Poli, C., Muselli, M., 2013, Twenty four hours ahead global irradiation forecasting using multilayer perceptron, Meteorological Applications, 1387.