DOI QR코드

DOI QR Code

Spray Drying of Lignocellulose Nanofibril (LCNF) and Characterization of Spray-dried LCNF

리그노셀룰로오스 나노피브릴의 분무건조 및 건조물의 특성

  • Park, Chan-Woo (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Han, Song-Yi (Department of Forest Biomaterials Engineering, Kangwon National University) ;
  • Lee, Seung-Hwan (Department of Forest Biomaterials Engineering, Kangwon National University)
  • 박찬우 (강원대학교 산림바이오소재공학과) ;
  • 한송이 (강원대학교 산림바이오소재공학과) ;
  • 이승환 (강원대학교 산림바이오소재공학과)
  • Received : 2017.03.03
  • Accepted : 2017.04.18
  • Published : 2017.05.25

Abstract

In this study, the effect of spray-drying conditions and surfactant addition on the spray-drying yield, morphological characterization, size distribution and re-dispersity in water of spray-dried lignocellulose nanofibril (LCNF) were investigated. The freeze-dried LCNF after solvent exchange had linear fiber morphology with a diameter of 70-300 nm, and the spray-dried LCNF showed rod-like particle morphology. The spray-drying yield and particle size of spary-dried LCNF at $140^{\circ}C$ was highest and smallest, respectively. As LCNF concentration and blowing rate decreased and increased, respectively, the spray-drying yield and particle size were increased. The highest spray-drying yield was found at distearyl dimethyl ammonium chloride (DDAC) addition of 10 phr at $140^{\circ}C$. As the particle size decreased and the DDAC content increased, filtration time of spray-dried LCNF in water was decreased and increased, respectively.

본 연구에서는 분무건조 조건 및 계면활성제 첨가에 따른 리그노셀룰로오스 나노피브릴(lignocellulose nanofibril, LCNF)의 분무건조 수율 및 건조 LCNF의 형태학적 특성, 치수분포 및 수재분산성을 조사하였다. 원료로는 약 70-300 nm 직경을 지니는 섬유상의 LCNF를 사용하였으며, 분무건조 LCNF는 rod형 파티클의 형태학적 특성을 보였다. $140^{\circ}C$ 온도조건에서의 분무건조 수율이 가장 높았으며, 분무건조 LCNF의 입자크기 또한 가장 작았다. LCNF 현탁액의 농도가 감소할수록 또한 송풍량이 증가할수록 분무건조 수율 및 입자크기가 증가하였다. 또한, 계면활성제의 첨가로 건조 수율을 향상시킬 수 있었으며, 첨가 비율이 증가할수록 평균입자크기가 감소하였다. 건조 LCNF의 입자 크기가 감소할수록, 물에서의 재분산성이 향상되었으며, 수현탁액의 여수시간이 증가하였다.

Keywords

References

  1. Amin, M.C.I.M., Abadi, A.G., Kates, H. 2014. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carboydrate Polymers 99: 180-189. https://doi.org/10.1016/j.carbpol.2013.08.041
  2. Cal, K. and Sollohub, K. 2010. Spray drying technique. I: Hardware and process parameters. Journal of pharmaceutical sciences 99(2): 575-586. https://doi.org/10.1002/jps.21886
  3. Eyholzer, C., Bordeanu, N., Lopez-Suevos, F., Rentsch, D., Zimmermann, T., Oksman, K. 2010. Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17(1): 19-30. https://doi.org/10.1007/s10570-009-9372-3
  4. Gardner D.J., Oporto, G.S., Mills, R., Samir, M.A.S.A. 2008. Adhesion and surface issues in cellulose and nanocellulose. Journal of Adhesion Science and Technology 22: 545-567. https://doi.org/10.1163/156856108X295509
  5. Iwamoto, S., Abe, K., Yano, H. 2008. The effect of hemicelluloses on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9: 1022-1026. https://doi.org/10.1021/bm701157n
  6. Park, C.W., Han, S.Y., Namgung, H.W., Seo, P.N., Lee, S.H. 2017. Effect of spray-drying condition and surfactant addition on morphological characteristics of spray-dried nanocellulose. Journal of Forest and Environmental Science 33(1): 33-38. https://doi.org/10.7747/JFES.2017.33.1.33
  7. Peng, Y., Gardner D.J., Han, Y. 2012a. Drying cellulose nanofibrils: in search of a suitable method. Cellulose 19: 91-102. https://doi.org/10.1007/s10570-011-9630-z
  8. Peng, Y., Han, Y., Gardner D.J. 2012b, Spray-drying cellulose nanofibrils: effect of drying process parameters on particle morphology and size distribution. Wood and Fiber Science 44: 1-14.
  9. Peng, Y., Gardner, D.J., Han, Y., Kiziltas, A., Cai, Z., Tshabalala, M.A. 2013. Influence of drying method on the material properties of nanocellulose I: thermostability and crystallinity. Cellulose 20(5): 2379-2392. https://doi.org/10.1007/s10570-013-0019-z
  10. Sosnik, A. and Seremeta, K.P. 2015. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in colloid and interface science 223: 40-54. https://doi.org/10.1016/j.cis.2015.05.003
  11. Walton, D.E. and Mumford, C.J. 1999. Spray dried products-characterization of particle morphology. Chemical Engineering Research and Design 77(1): 21-38. https://doi.org/10.1205/026387699525846