DOI QR코드

DOI QR Code

Characteristics of 32 × 32 Photonic Quantum Ring Laser Array for Convergence Display Technology

디스플레이 융합 기술 개발을 위한 32 × 32 광양자테 레이저 어레이의 특성

  • Lee, Jongpil (Department of Renewable Energy, Jungwon University) ;
  • Kim, Moojin (Department of Renewable Energy, Jungwon University)
  • 이종필 (중원대학교 신재생에너지자원학과) ;
  • 김무진 (중원대학교 신재생에너지자원학과)
  • Received : 2017.03.28
  • Accepted : 2017.05.20
  • Published : 2017.05.28

Abstract

We have fabricated and characterized $32{\times}32$ photonic quantum ring (PQR) laser arrays uniformly operable with $0.98{\mu}A$ per ring at room temperature. The typical threshold current, threshold current density, and threshold voltage are 20 mA, $0.068A/cm^2$, and 1.38 V. The top surface emitting PQR array contains GaAs multiquantum well active regions and exhibits uniform characteristics for a chip of $1.65{\times}1.65mm^2$. The peak power wavelength is $858.8{\pm}0.35nm$, the relative intensity is $0.3{\pm}0.2$, and the linewidth is $0.2{\pm}0.07nm$. We also report the wavelength division multiplexing system experiment using angle-dependent blue shift characteristics of this laser array. This photonic quantum ring laser has angle-dependent multiple-wavelength radial emission characteristics over about 10 nm tuning range generated from array devices. The array exhibits a free space detection as far as 6 m with a function of the distance.

상온에서 단일소자의 경우 $0.98{\mu}A$ 문턱전류를 나타내는 $32{\times}32$ 광양자테 레이저 어레이를 제작하였다. 제작된 어레이의 전체 소자들의 문턱전류 및 밀도, 전압은 20 mA, $0.068A/cm^2$, 1.38 V의 값을 나타내었다. 발광 광양자테 어레이는 GaAs 물질이 다중-양자 우물 활성 영역을 구성하고, 칩이 차지하는 면적은 $1.65{\times}1.65mm^2$였으며, 소자들의 피크파워 파장은 $858.8{\pm}0.35nm$, 상대적인 레이저 세기는 $0.3{\pm}0.2$, 선폭은 $0.2{\pm}0.07nm$로 비교적 균일한 특성을 보였다. 또한, 레이저 어레이의 각도 의존적 청색 이동 특성을 이용한 파장 분할 멀티플렉싱 시스템 실험을 진행하였고, 각도에 따라 10 nm 정도 파장이 변하는 현상을 발견하였으며, 거리에 따른 레이저 세기를 측정한 결과 6 m에서도 감지할 수 있음을 확인하였다.

Keywords

References

  1. U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher, "GaAs/AlGaAs microdisk lasers", Appl. Phys. Lett., Vol. 64, No. 15, pp.1911-1913, 1994. https://doi.org/10.1063/1.111740
  2. J. C. Ahn, H. Y. Kang, and O'Dae Kwon, "Angle-Dependent Multiple-Wavelength Radial Emissions in a Toroidal Microcavity: A Photonic Quantum Ring Laser", Proc. SPIE, Vol. 3283, pp.241-251, 1998.
  3. J. C. Ahn, K. S. Kwak, B. H. Park, H. Y. Kang, J. Y. Kim, and O'Dae Kwon, "Photonic Quantum Ring", Phys. Rev. Lett., Vol. 82, No. 3, pp.536-539, 1999. https://doi.org/10.1103/PhysRevLett.82.536
  4. K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, "Dynamics of GaAs/AlGaAs microdisk lasers", Appl. Phys. Lett., Vol. 77, No. 15, pp.2304-2306, 2000. https://doi.org/10.1063/1.1317544
  5. B. H. Park, J. C. Ahn, J. Bae, J. Y. Kim, M. S. Kim, S. D. Baek, and O'Dae Kwon, "Evanescent and propagating wave characteristics of the photonic quantum ring laser", Appl. Phys. Lett., Vol. 79, No. 11, pp.1593-1595, 2001. https://doi.org/10.1063/1.1402655
  6. J. Y. Kim, K. S. Kwak, J. S. Kim, B. K. Kang, and O'Dae Kwon, "Fabrication of photonic quantum ring laser using chemically assisted ion beam etching", J. Vac. Sci. Technol. B, Vol. 19, No. 4, pp.1334-1338, 2001. https://doi.org/10.1116/1.1382872
  7. B. H. Park, J. Bae, M. J. Kim, and O'Dae Kwon, "Chiral wave propagation manifold of the photonhic quantum ring laser", Appl. Phys. Lett., Vol. 81, No. 4, pp.580-582, 2002. https://doi.org/10.1063/1.1495545
  8. J. Bae, J. W. Lee, O'Dae Kwon , and V. G. Minogin, "Spectrum of three-dimensional photonic quantum-ring microdisk cavities: comparison between theory and experiment", Opt. Lett., Vol. 28, No. 20, pp.1861-1863, 2003. https://doi.org/10.1364/OL.28.001861
  9. M. J. Kim, D. K. Kim, S. E. Lee, and O'Dae Kwon, "Wet etching fabrication of photonic quantum ring laser", J. Appl. Phys., Vol. 96, No. 9, pp.4742-4745, 2004. https://doi.org/10.1063/1.1786346
  10. S. J. An, J. H. Yoon, J. W. Lee, and O'Dae Kwon, "Spectral analysis of a three-dimensional photonic quantum ring laser with a square microcavity", J. Appl. Phys., Vol. 99, No. 3, pp.033102-1-033102-5, 2006. https://doi.org/10.1063/1.2168236
  11. O'Dae Kwon, S. J. An, D. K. Kim, S. E. Lee, J. Bae, J. H. Yoon, B. H. Park, J. Y. Kim, and J. Ahn, "Hole emitter of photonic quantum ring", Appl. Phys. Lett., Vol. 89, No. 1, pp.011108-1-011108-3, 2006. https://doi.org/10.1063/1.2219346
  12. D. K. Kim, S. J. An, E. G. Lee, and O'Dae Kwon, "Polarization characteristics of photonic quantum ring laser with three-dimensional whispering gallery resonances", J. Appl. Phys., Vol. 102, No. 5, pp.053104-1-1053104-3, 2007. https://doi.org/10.1063/1.2777121
  13. Y. Xie, J. Beeckman, K. Panajotov, and K. Neyts, "Vertical-cavity surface-emitting laser with a liquid crystal external cavity", Opt. Lett., Vol. 39, No. 22, pp.6494-6497, 2014. https://doi.org/10.1364/OL.39.006494
  14. O. M. Khreis, "Modeling and analysis of smoothly diffused vertical cavity surface emitting lasers", Comput. Condens. Matter, Vol. 9, pp.56-61, 2016. https://doi.org/10.1016/j.cocom.2016.09.005
  15. K. S. Kwak, J. Y. Kim, B. H. Park, D. H. Park, M. J. Kim, and O'Dae Kwon, "Characteristics of $8{\times}8$ PQR laser array", in Tech. Dig. CLEO 2000, pp.499, Paper No. CThM70, 2000.
  16. S. H. Lee and Y. Zhai, "Relation between Certainty and Uncertainty with Fuzzy Entropy and Similarity Measure", Journal of Korea Convergence Society, Vol. 5, No. 4, pp.155-161, 2014. https://doi.org/10.15207/JKCS.2014.5.4.155
  17. C. H. Siang and S. H. Lee, "Information Management by Data Quantification with FuzzyEntropy and Similarity Measure", Journal of Korea Convergence Society, Vol. 4, No. 2, pp.35-41, 2013. https://doi.org/10.15207/JKCS.2013.4.2.035
  18. T. U. Nipon and S. H. Lee, "Similarity Measure Design on High Dimensional Data", Journal of Korea Convergence Society, Vol. 4, No. 1, pp.43-48, 2013. https://doi.org/10.15207/JKCS.2013.4.1.043
  19. H. J. Jung, "The Analysis of Data on the basis of Software Test Data", Journal of digital Convergence , Vol. 13, No. 10, pp.1-7, 2015. https://doi.org/10.14400/JDC.2015.13.10.1
  20. H. J. Cho, G. C. Kim, K. B. Kim, "University-industry Cooperation for Creative Convergence Technology Fields", Journal of digital Convergence, Vol. 14, No. 2, pp.271-278, 2016. https://doi.org/10.14400/JDC.2016.14.2.271
  21. S. H. Namn, "Knowledge Creation Structure of Big Data Research Domain", Journal of digital Convergence , Vol. 13, No. 9, pp.129-136, 2015. https://doi.org/10.14400/JDC.2015.13.9.129
  22. P. Radhakrishnan and A. Clementking, "Determination of Object Similarity Closure Using Shared Neighborhood Connectivity", Journal of Korea Convergence Society, Vol. 5, No. 3, pp.41-44, 2014. https://doi.org/10.15207/JKCS.2014.5.3.041
  23. B. J. Jeon, D. B. Yoon, S. S. Shin, "Integrated Monitoring System using Log Data", Journal of Convergence for Information Technology, Vol. 7, No. 1, pp.35-42, 2017. https://doi.org/10.14801/jaitc.2017.7.2.35
  24. K. T. Kim and S. C. Yun, "A Study on BER Performance Improvement by using Adaptive FEC schemes in Visible Light Communication", Journal of IT Convergence Society for SMB, Vol. 6, No. 4, pp.99-106, 2016. https://doi.org/10.22156/CS4SMB.2016.6.4.099