DOI QR코드

DOI QR Code

Multi-camera image feature analysis for virtual space convergence

가상공간 융합을 위한 다중 카메라 영상 특징 분석

  • Yun, Jong-Ho (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Choi, Myung-Ryul (Division of Electronics Engineering, Hanyang University) ;
  • Lee, Sang-Sun (Department of Electronics and Computer Engineering, Hanyang University)
  • 윤종호 (한양대학교 전자통신컴퓨터공학과) ;
  • 최명렬 (한양대학교 전자공학부) ;
  • 이상선 (한양대학교 전자통신컴퓨터공학과)
  • Published : 2017.05.28

Abstract

In this paper, we propose a method to reduce the difference in image characteristics when multiple camera images are captured for virtual space production. Sixty-four images were used by cross-mounting eight bodies and lenses, respectively. Image analysis compares and analyzes the standard deviation of the histogram and pixel distribution values. As a result of the analysis, it shows different image characteristics depending on the lens or image sensor, though it is a camera of the same model. In this paper, we have adjusted the distribution of the overall brightness value of the image to compensate for this difference. As a result, the average deviation was the maximum of (Indoor: 6.89, outdoor: 24.23), we obtained images with almost no deviation (Indoor: maximum 0.42, outdoor: maximum: 2.73). In the future, we will study and apply more accurate image analysis methods than image brightness distribution.

본 논문은 가상공간 제작을 위해 다수의 카메라로 영상을 촬영했을 때, 영상 특성 차이를 감소시키는 방법을 제안하였다. 각각 8 개의 본체와 렌즈를 교차 장착하여 64 개의 영상을 사용하였다. 영상 분석은 히스토그램과 픽셀 분포 값의 표준 편차를 분석 비교하였다. 분석결과, 동일 기종의 카메라임에도 불구하고, 렌즈 혹은 이미지 센서에 따라 각각 다른 영상 특성을 보여주었다. 본 논문에서는 이러한 차이를 보정하기 위해 영상의 전체 밝기 값의 분포를 조절하였다. 시뮬레이션 결과, 평균 편차가 최대 (실내 : 6.89, 실외 : 24.23) 이었으나, 시뮬레이션 진행 후 편차가 거의(실내 : 최대 0.42, 실외 : 최대 : 2.73) 없는 영상을 얻었다. 추후에는 영상 밝기 분포보다 정밀한 영상 분석 방법을 연구하고 적용할 것이다.

Keywords

References

  1. J. H. LEE, "Multimedia", Communicatiobooks, ch7, 2013
  2. http://navercast.naver.com
  3. http://navercast.naver.com
  4. R. C. Gonzalez, "Digital Image Processing", 2nd Edition, Prentice Hall, pp. 75-146, 2002
  5. R. Crane, "A Simplified Approach to Image Processing", Prentice Hall, pp. 42-66, 1997.
  6. K. N. Platanioits, "Color Image Processing and Application", Springer, pp. 209-229, 2000.
  7. Berndjahne, "Digital Video Processing", Springer-Verlag, pp. 77-94, 1993.
  8. F. G. Stremler, "Introduction to Communication Systems", Addison-Wesley, pp. 459-486, 1993.
  9. Y. T. Kim, et al., "Contrast Enhancement Using Brightness Preserving Bi-Histogram Equalization", IEEE Trans. On Consumer Electronics, Vol. 43, No.1, pp. 1-8, Feb. 1997. https://doi.org/10.1109/30.580378
  10. Qiyuan Tian and Jiang Duan, "Local Histogram Modification Based Contrast Enhancement", Audio, Language and Image Processing (ICALIP), 2012 International Conference on, pp. 1-6, 2012
  11. J. Y. Kim, et al., "An Advanced Contrast Enhancement Using Partially Overlapped Sub-Block Histogram Equalization", IEEE Trans. on Circuit and Systems, Vol. 11, No. 4, pp. 475-484, 2005.
  12. S. D. Chen, and A. R. Ramli, "Contrast Enhancement using Recursive Mean-Separate Histogram Equalization for Scalable Brightness preservation", IEEE Transactions on Consumer Electronics, Vol. 49, No. 4, pp. 1301-1309, 2003. https://doi.org/10.1109/TCE.2003.1261233
  13. R. Bala, et al., "Gamut Mapping to Preserve Spatial Luminance Variations", Journal of Image Science and Technology, Vol. 45, No. 5, pp. 436-443, September/ October 2001.
  14. C. S. Lee, et al., "Gamut Mapping Algorithm Using Lightness Mapping and Multiple Anchor Points for Linear Tone and Maximum Chroma Reproduction", Journal of Image Science and Technology, Vol. 45, No. 3, pp. 209-223, May/June 2001.
  15. G. H. Park, et al, "A Contrast Enhancement Method using Dynamic Range Separate Histogram Equalization", IEEE Trans on Consumer Electronic, Vol. 54, No. 4, pp. 1981-1987 , 2008 https://doi.org/10.1109/TCE.2008.4711262
  16. Y. S. HO, "Camera Adjustment and Image Alignment Technique for Multi - view 3D Images.", IBroadcasting and Technology, Vol. 213, pp. 160-165 , 2013
  17. S. C. Lim, et al, "A Calibration Method for Multimodal dual Camera Environment", Journal of the Korea Institute of Information and Communication Engineering, Vol. 19 No. 9, pp. 2138-2144 , 2015 https://doi.org/10.6109/jkiice.2015.19.9.2138
  18. K. I. Kim, et al, "Calibration of Radial Distortion and Synthesis of Panoramic Image from Multi-directional Camera Images", Journal of the Korea Institute of Next Generation Computin, Vol. 9, No. 6, pp. 56-65 , 2008
  19. M. K. Oh, et al, "Long Distance Vehicle License Plate Region Detection Using Low Resolution Feature of License Plate Region in Road View Images", Journal of digital Convergence , Vol. 15, No. 1, pp. 239-245, 2017. https://doi.org/10.14400/JDC.2017.15.1.239
  20. W. S. Hwang, et al, "Convergence research of low-light image enhancement method and vehicle recorder", Journal of the Korea Convergence Society, Vol. 7. No. 6, pp. 1-6, 2016. https://doi.org/10.15207/JKCS.2016.7.6.001
  21. S. H. Kim, "Development of the 3D Hair Style Simulator using Augmented Realityd", Journal of the Korea Convergence Society, Vol. 6, No. 6, pp. 249-255, 2015.
  22. B. S. Kang, et al, "Fire Alarm Solutions Through the Convergence of Image Processing Technology and M2M", Journal of the Korea Convergence Society, Vol. 7 No. 1, pp. 37-42, 2016. https://doi.org/10.15207/JKCS.2016.7.1.037
  23. J. S. Han, "Color and Brightness Calibration Convergence Technology for 5D Virtual Reality Attractions", Journal of the Korea Convergence Society, Vol. 7 No. 1, pp. 25-30, 2016. https://doi.org/10.15207/JKCS.2016.7.1.025