DOI QR코드

DOI QR Code

Study on Parallel Processing for Efficient Flexible Multibody Analysis based on Subsystem Synthesis Method

병렬 처리를 이용한 부분 시스템 기반 유연다물체 동역학의 효율적인 해석 연구

  • Han, Jong-Boo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Song, Hajun (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.) ;
  • Kim, Sung-Soo (Dept. of Mechatronics Engineering, Chungnam Nat'l Univ.)
  • 한종부 (충남대학교 메카트로닉스 공학과) ;
  • 송하준 (충남대학교 메카트로닉스 공학과) ;
  • 김성수 (충남대학교 메카트로닉스 공학과)
  • Received : 2017.02.16
  • Accepted : 2017.03.07
  • Published : 2017.06.01

Abstract

Flexible multibody simulations are widely used in the industry to design mechanical systems. In flexible multibody dynamics, deformation coordinates are described either relatively in the body reference frame that is floating in the space or in the inertial reference frame. Moreover, these deformation coordinates are generated based on the discretization of the body according to the finite element approach. Therefore, the formulation of the flexible multibody system always deals with a huge number of degrees of freedom and the numerical solution methods require a substantial amount of computational time. Parallel computational methods are a solution for efficient computation. However, most of the parallel computational methods are focused on the efficient solution of large-sized linear equations. For multibody analysis, we need to develop an efficient formulation that could be suitable for parallel computation. In this paper, we developed a subsystem synthesis method for a flexible multibody system and proposed efficient parallel computational schemes based on the OpenMP API in order to achieve efficient computation. Simulations of a rotating blade system, which consists of three identical blades, were carried out with two different parallel computational schemes. Actual CPU times were measured to investigate the efficiency of the proposed parallel schemes.

많은 절점 자유도로 표현이 되는 유연다물체 시스템의 효율적인 해석을 위해서는 병렬처리 기법이 적용될 수 있다. 이 분야에서의 병렬처리기법은 주로 선형대수방정식의 효율적인 해법에 초점이 맞추어 연구가 진행되었다. 본 논문에서는 기존의 방법과는 달리 병렬처리에 적합한 유연다물체 동역학 공식을 부분 시스템 합성방법을 이용하여 개발하고, OpenMP를 사용한 효율적인 병렬처리 방식을 제안하였다. 서로 다른 두 가지 병렬처리 방식을 3개의 동일한 유연체 회전 날개 시스템 시뮬레이션 통하여 비교하였다. 또한 실제의 CPU시간을 비교하여 제안한 병렬처리 방법의 효율성을 고찰하였다.

Keywords

References

  1. Wu, S.C., Haug, E. J. and Kim, S. S., 1989, "A Variational Approach to Dynamics of Flexible Multibody System," Mech.Struct.&Mach., Vol. 17, No. 1, pp. 3-32. https://doi.org/10.1080/089054508915627
  2. Kim, S. S. and Haug, E. J., 1990, "Selection of Deformation Modes for Flexible Multibody Dynamics," Mech.Struct.&Mach., Vol. 18, No. 4, pp. 565-586. https://doi.org/10.1080/08905459008915685
  3. Spanos, J. T. and Tsuha, W. S., 1991, "Selection of Component Modes for Flexible Multibody Simulation," Journal of Guidance, Control, and Dynamics, Vol. 14, No. 2, pp. 278-286. https://doi.org/10.2514/3.20638
  4. Kim, S. S. and You, J. Y., 1998, "Gun System Vibration Analysis using Flexible Multibody Dynamics," KSNVE, Vol. 8, No. 1, pp. 203-211.
  5. Shabana, A. A., 1997, "Definition of the Slopes and the Finite Element Absolute Nodal Coordinate Formulation," Multibody System Dynamics, Vol. 1, No. 3, pp. 339-348. https://doi.org/10.1023/A:1009740800463
  6. Shabana, A. A., 1998, "Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics," Nonlinear Dynamics, Vol. 16, pp. 293-306. https://doi.org/10.1023/A:1008072517368
  7. Hwang, R. S., Bae, D. S., Kuhl, J. G. and Haug, E. J., 1990, "Parallel Processing for Real-time Dynamic System Simulation," Journal of Mechanical Design, Vol. 112, No. 4, 520-528. https://doi.org/10.1115/1.2912641
  8. Gonzalez, F., Luaces, A., Lugris, U. and Gonzalez, M., 2009, "Non-intrusive Parallelization of Multibody System Dynamic Simulations," Computational Mechanics, Springer Verlag, Vol. 44, 493-504.
  9. Critchley, J. H. and Anderson, K. S., 2004, "A Parallel Logarithmic Order Algorithm for General Multibody System Dynamics," Multibody System Dynamics, Vol. 12, No. 1, pp. 75-93. https://doi.org/10.1023/B:MUBO.0000042893.00088.c9
  10. Bauchau, O. A., 2010, "Parallel Computation Approaches for Flexible Multibody Dynamics Simulations," Journal of the Franklin Institute, Vol. 347, No. 1, pp. 53-68. https://doi.org/10.1016/j.jfranklin.2009.10.001
  11. Shabana, A. A., 2005, Dynamics of Multibody Systems, Cambridge, New York, USA.
  12. Yun, H. S., Kim, S. S., Lee, C. H. and Kim, H. W. 2015, "A Study on the Efficient Flexible Multibody Dynamics Modeling of Deep Seabed Integrated Mining System with Subsystem Synthesis Method," KSME-A, Vol. 39, No. 12, pp. 1213-1220. https://doi.org/10.3795/KSME-A.2015.39.12.1213
  13. Kim, S. S. and Han, J. G., 1999, "A Study on Subsystem Synthesis Method for Vehicle System," KSME-A, Vol. 23, No. 3, pp. 520-534.
  14. Kang, H. C. and Kim, S. S., 2015, "Parallel Processing with the Subsystem Synthesis Method for Efficient Vehicle Analysis," JMST, Vol. 29, No. 7, pp. 2663-2669.
  15. Wu, S.C. and Haug, E. J, 1988, "Geometric Nonlinear Substructuring for Dynamics of Flexible Mechanical Systems," Int. J. Numer. Meth. Eng., Vol 26, pp. 2211-2226. https://doi.org/10.1002/nme.1620261006