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ON PILLAI’S PROBLEM WITH TRIBONACCI NUMBERS

AND POWERS OF 2

Jhon J. Bravo, Florian Luca, and Karina Yazán

Abstract. The Tribonacci sequence {Tn}n≥0 resembles the Fibonacci
sequence in that it starts with the values 0, 1, 1, and each term afterwards
is the sum of the preceding three terms. In this paper, we find all integers
c having at least two representations as a difference between a Tribonacci
number and a power of 2. This paper continues the previous work [5].

1. Introduction

A perfect power is a positive integer of the form ax where a > 1 and x ≥ 2
are integers. Pillai wrote several papers on these numbers. In 1936 and again in
1945 (see [13]), he conjectured that for any given integer c ≥ 1, the number of
positive integer solutions (a, b, x, y), with x ≥ 2 and y ≥ 2, to the Diophantine
equation

(1) ax − by = c

is finite. This conjecture which is still open for all c 6= 1, amounts to saying
that the distance between two consecutive terms in the sequence of all perfect
powers tends to infinity. The case c = 1 is Catalan’s conjecture which predicted
that the only consecutive perfect powers were 8 and 9 was solved by Mihăilescu
[11].

The work started by Pillai was pursued in 1936 by A. Herschfeld [8, 9] who
showed that if c is an integer with sufficiently large absolute value, then equa-
tion (1), in the special case (a, b) = (3, 2), has at most one solution (x, y). For
small |c| this is not the case. Pillai [13, 14] extended Herschfeld’s result to the
more general exponential Diophantine equation (1) with fixed integers a, b, c
with gcd(a, b) = 1 and a > b ≥ 1. Specifically, Pillai showed that there exists
a positive integer c0(a, b) such that, for |c| > c0(a, b), equation (1) has at most
one positive integer solution (x, y). Pillai’s work (as well as Herschfeld’s one)
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depended on Siegel’s sharpening of Thue’s inequality on the rational approxi-
mation of algebraic numbers [15] and the proof does not give any explicit value
for c0(a, b). This was made effective by Stroeker and Tijdeman [16] (for the
case (a, b) = (3, 2)) and Mo De Ze and Tijdeman [12] for a more general case.

Recently, Ddamulira, Luca and Rakotomalala [5] considered the Diophantine
equation

(2) Fn − 2m = c,

where c is a fixed integer and {Fn}n≥0 is the sequence of Fibonacci numbers
given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for all n ≥ 0. For equation
(2), which can be seen as a variation of Pillai’s problem, they proved that the
only integers c having at least two representations of the form Fn − 2m are c ∈
{0, 1,−3, 5,−11,−30, 85} (here, F1 = F2 = 1 are identified so representations
involving F1 or F2 do not count as distinct). Moreover, they computed all the
representations of the form (2) for all these values of c.

In this paper we study the similar problem with the Tribonacci sequence
{Tn}n≥0 given by T0 = 0, T1 = T2 = 1, and

Tn+3 = Tn+2 + Tn+1 + Tn for all n ≥ 0.

That is, we are interested in finding all positive integers c admitting at least
two representations of the form Tn − 2m for some positive integers n and m.
As in the Fibonacci case, we discard the situation when n = 1 and just count
the solutions for n = 2, since T1 = T2. The above is just a convention to avoid
trivial parametric families such as 1− 2m = T1 − 2m = T2 − 2m. Therefore, we
always assume that n ≥ 2.

We prove the following result.

Theorem 1. The only integers c having at least two representations of the

form Tn − 2m are c ∈ {0,−1,−3, 5,−8}. Furthermore, for each c in the above

set, all its representations of the form Tn − 2m with integers n ≥ 2 and m ≥ 1
are

0 = 4− 4 = T4 − 22 = T3 − 21 = 2− 2,

−1 = 7− 8 = T5 − 23 = T2 − 21 = 1− 2,

−3 = 13− 16 = T6 − 24 = T2 − 22 = 1− 4,

5 = 13− 8 = T6 − 23 = T5 − 21 = 7− 2,

−8 = 504− 512 = T12 − 29 = T7 − 25 = 24− 32.

We note that in the recent paper [4], the authors have studied the same
problem but involving both {Fn}n≥0 and {Tm}m≥0. That is, they found all
integers c having two nontrivial representations as Fn − Tm for some positive
integers m and n.
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2. Preliminaries

In this section we present some basic properties of the Tribonacci numbers
and a lower bound for a nonzero linear form in logarithms of algebraic numbers.
Additionally, we state a reduction lemma, which is an immediate variation of a
result due to Dujella and Pethő from [7], and will be the key tool used in this
paper to reduce some upper bounds. All these facts will be used in the proof
of Theorem 1.

2.1. The Tribonacci sequence

The characteristic polynomial of the Tribonacci sequence {Tn}n≥0 is

Ψ(x) = x3 − x2 − x− 1.

This polynomial, which is irreducible in Q[x], has a positive real root

α =
1

3

(

1 + (19 + 3
√
33)1/3 + (19− 3

√
33)1/3

)

and two complex conjugate roots β and γ strictly inside the unit circle. Further,
|β| = |γ| = α−1/2. A recent result of Dresden and Du [6] establishes a Binet-
like formula for generalized Fibonacci sequences. For Tribonacci numbers it
states that

(3) Tn = Cαα
n−1 + Cββ

n−1 + Cγγ
n−1 for all n ≥ 1,

where CX = (X − 1)/(4X − 6). Dresden and Du also showed that the contri-
bution of the complex roots β and γ to the right–hand side of (3) is very small.
More precisely,

(4) |Tn − Cαα
n−1| < 1/2 for all n ≥ 0.

It is also well-known (see [2]) that

(5) αn−2 ≤ Tn ≤ αn−1 for all n ≥ 1.

Let L := Q(α, β) be the splitting field of Ψ over Q. Then [L : Q] = 6.
Furthermore, [Q(α) : Q] = 3. The Galois group of L over Q is

G := Gal(L/Q) ∼= {(1), (αβ), (αγ), (βγ), (αβγ), (αγβ)} ∼= S3.

Here, we identify the automorphisms of G with the permutations of the roots
of Ψ. For instance, the permutation (αβ) corresponds to the automorphism
σ : α → β, β → α, γ → γ.

2.2. Linear forms in logarithms

Let η be an algebraic number of degree d with minimal primitive polynomial
over the integers

a0x
d + a1x

d−1 + · · ·+ ad = a0

d
∏

i=1

(x − η(i)),
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where the leading coefficient a0 is positive and the η(i)’s are the conjugates of
η. The logarithmic height of η is given by

h(η) =
1

d

(

log a0 +
d
∑

i=1

log
(

max{|η(i)|, 1}
)

)

.

The following properties of the logarithmic height function h(·) will be used in
the next sections:

h(η ± γ) ≤ h(η) + h(γ) + log 2,

h(ηγ±1) ≤ h(η) + h(γ),

h(ηs) = |s|h(η) (s ∈ Z).

Our main tool is a general lower bound for a linear form in logarithms of alge-
braic numbers given by the following result of Matveev (see [10] and Theorem
9.4 in [3]).

Theorem 2 (Matveev’s theorem). Assume that γ1, . . . , γt are positive real

algebraic numbers in a real algebraic number field K of degree D, b1, . . . , bt are
rational integers, and

Λ := γb1
1 · · · γbt

t − 1,

is not zero. Then

|Λ| > exp
(

−1.4× 30t+3 × t4.5 ×D2(1 + logD)(1 + logB)A1 · · ·At

)

,

where

B ≥ max{|b1|, . . . , |bt|},
and

Ai ≥ max{Dh(γi), | log γi|, 0.16} for all i = 1, . . . , t.

2.3. The reduction lemma

In the course of our calculations, we get some upper bounds on our variables
which are very large, so we need to reduce them. To this end, we use some
results of the theory of continued fractions. Specifically, for a nonhomogenenous
linear forms in two integer variables, we will use a slight variation of a result
due to Dujella and Pethő from [7], which itself is a generalization of a result of
Baker–Davenport [1].

For a real number X , we write ||X || = min{|X−n| : n ∈ Z} for the distance
from X to the nearest integer.

Lemma 3. Let M be a positive integer, let p/q be a convergent of the continued

fraction of the irrational τ such that q > 6M , and let A,B, µ be some real

numbers with A > 0 and B > 1. Let further ǫ = ||µq||−M ||γq||. If ǫ > 0, then
there is no solution to the inequality

0 < |uτ − v + µ| < AB−w,
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in positive integers u, v and w with

u ≤ M and w ≥ log(Aq/ǫ)

logB
.

3. Proof of Theorem 1

Assume that (n,m) 6= (n1,m1) are such that

Tn − 2m = Tn1
− 2m1 .

If m = m1, then Tn = Tn1
and since min{n, n1} ≥ 2, we get that n = n1, so

(n,m) = (n1,m1), contradicting our assumption. Thus, m 6= m1, and we may
assume that m > m1. Since

(6) Tn − Tn1
= 2m − 2m1 ,

and the right–hand side is positive, we get that the left–hand side is also positive
and so n > n1. Thus, n ≥ 3 and n1 ≥ 2.

On the other hand, since n > n1 we have that Tn1
≤ Tn−1 and therefore

Tn = Tn−1 + Tn−2 + Tn−3 ≥ Tn−1 + Tn−2 ≥ Tn1
+ Tn−2.

So, from the above and (5) and (6), we have

αn−4 ≤ Tn−2 ≤ Tn − Tn1
= 2m − 2m1 < 2m and(7)

αn−1 ≥ Tn > Tn − Tn1
= 2m − 2m1 ≥ 2m−1

leading to

(8) 1 +

(

log 2

logα

)

(m− 1) < n <

(

log 2

logα

)

m+ 4.

Note that the above inequality (8) in particular implies that m < n. In addi-
tion, if n ≤ 250, then m < 220. By a brute force computer enumeration in the
range

2 ≤ n1 < n ≤ 250 and 1 ≤ m1 < m < 220

we found all solutions listed in Theorem 1. Thus, we may assume from now on
that n > 250.

On the other hand, by (4) and (6), we get
∣

∣Cαα
n−1 − 2m

∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− 2m1)
∣

∣

=
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1) + (Cαα

n1−1 − 2m1)
∣

∣

< 1 +
7

10
αn1−1 + 2m1

< αn1 + 2m1

< 2max{αn1 , 2m1}.
In the above we also used that Cα = 0.6184 . . .. Dividing by 2m we get

(9)
∣

∣Cαα
n−12−m − 1

∣

∣ < 2max

{

αn1

2m
, 2m1−m

}

< max{αn1−n+6, 2m1−m+1},
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where for the last right–most inequality above we used (7) and the fact that
2 < α2. For the left–hand side above, we use Theorem 2 with the data

t = 3, γ1 = Cα, γ2 = α, γ3 = 2, b1 = 1, b2 = n− 1, b3 = −m.

We take K = Q(α) for which D = 3. The minimal polynomial of Cα over Z is

44x3 − 44x2 + 12x− 1.

Since |Cα|, |Cβ |, |Cγ | < 1 we get that h(Cα) = (log 44)/3 so we can take A1 =
log 44. We can also take A2 = 3h(γ2) = logα, A3 = 3h(γ3) = 3 log 2. Since
max{1, n− 1,m} = n− 1 we take B = n. Put

Λ = Cαα
n−12−m − 1.

If Λ = 0, then we have that Cαα
n−1 = 2m ∈ Z. Conjugating the above

relation by the automorphism (αβ), we obtain that Cββ
n−1 = 2m, which is

false because |Cββ
n−1| < 1 while 2m ≥ 4. Thus Λ 6= 0. Another way to see

that Λ 6= 0 is by using the fact that the number Cα is not an algebraic integer.
Then, the left–hand side of (9) is bounded below, by Theorem 2, as

log |Λ| > −1.4× 306 × 34.5 × 32(1 + log 3)(1 + logn)(log 44)(logα)(3 log 2).

Comparing with (9), we get

min{(n− n1 − 6) logα, (m−m1 − 1) log 2} < 1.3× 1013(1 + logn),

which gives

min{(n− n1) logα, (m−m1) log 2} < 1.4× 1013(1 + logn).

Now the argument splits into two cases.

Case 1. min{(n− n1) logα, (m−m1) log 2} = (n− n1) logα.

In this case, we rewrite (6) as
∣

∣Cαα
n−1 − Cαα

n1−1 − 2m
∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1)− 2m1

∣

∣

< 1 + 2m1 ≤ 2m1+1,

so

(10)
∣

∣Cα(α
n−n1 − 1)αn1−12−m − 1

∣

∣ < 2m1−m+1.

Let us introduce

Λ1 = Cα(α
n−n1 − 1)αn1−12−m − 1.

We apply again Theorem 2. We take t = 3 and

γ1 = Cα(α
n−n1 − 1), γ2 = α, γ3 = 2, b1 = 1, b2 = n1 − 1, b3 = −m.

We begin by noticing that the three numbers γ1, γ2, γ3 belong to K = Q(α), so
we can take D = 3. Clearly, Λ1 6= 0, for if Λ1 = 0, then

Cα(α
n−n1 − 1)αn1−1 = 2m,
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and conjugating this last relation by the automorphism (αβ), we obtain that
Cβ(β

n−n1 −1)βn1−1 = 2m. But this not possible since |Cβ(β
n−n1 −1)βn1−1| <

1 while 2m ≥ 4.
Since

h(γ1) ≤ h(Cα) + h(αn−n1 − 1)

≤ log 44

3
+ (n− n1)

logα

3
+ log 2(11)

it follows that 3h(γ1) ≤ log 352+(n−n1) logα < log 352+1.4×1013(1+logn).
So, we can take A1 = 1.5 × 1013(1 + log n). Further, as before, we can take
A2 = logα and A3 = 3 log 2. Finally, by recalling that m < n, we can take
B = n.

We then get that

log |Λ1|
>− 1.4×306×34.5×32(1+log 3)(1+logn)(1.5×1013(1+logn))(logα)(3 log 2).

Thus,
log |Λ1| > −5.2× 1025(1 + logn)2.

Comparing this with (10), we get that

(m−m1) log 2 < 5.3× 1025(1 + logn)2.

Case 2. min{(n− n1) logα, (m−m1) log 2} = (m−m1) log 2.

In this case, we rewrite (6) as
∣

∣Cαα
n−1 − 2m + 2m1

∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1) + Cαα

n1−1
∣

∣

< 1 +
7

10
αn1−1 < αn1

so

(12)
∣

∣Cα(2
m−m1 − 1)−1αn−12−m1 − 1

∣

∣ <
αn1

2m − 2m1

≤ 2αn1

2m
< αn1−n+6.

Inequality (12) suggests once again studying a lower bound for the absolute
value of

Λ2 = Cα(2
m−m1 − 1)−1αn−12−m1 − 1.

We take t = 3 and

γ1 = Cα(2
m−m1 − 1)−1, γ2 = α, γ3 = 2, b1 = 1, b2 = n− 1, b3 = −m1.

In this application of Matveev’s theorem we take B = n and K = Q(α) and so
D = 3. Note that, if Λ2 = 0, then Cα = (α−1)n−n1 ·2m1 · (2m−m1 −1) implying
that Cα is an algebraic integer, which is not the case. Thus, Λ2 6= 0.

Now, we note that

h(γ1) ≤ h(Cα) + h(2m−m1 − 1) =
log 44

3
+ log(2m−m1 − 1)

< log(2m−m1+2).
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Thus, h(γ1) < (m − m1 + 2) log 2 < 1.5 × 1013(1 + logn) and so we take
A1 = 4.5× 1013(1+ logn). As before, we can take A2 = logα and A3 = 3 log 2.

It then follows from Theorem 2, after some calculations, that

log |Λ2| > −1.6× 1026(1 + logn)2.

From this and (12), we obtain that

(n− n1) logα < 1.7× 1026(1 + logn)2.

Thus, in both Case 1 and Case 2, we have

min{(n− n1) logα, (m−m1) log 2} < 1.4× 1013(1 + log n)

max{(n− n1) logα(m−m1) log 2} < 1.7× 1026(1 + log n)2.
(13)

We now finally rewrite equation (6) as
∣

∣Cαα
n−1 − Cαα

n1−1 − 2m + 2m1

∣

∣ =
∣

∣(Cαα
n−1 − Tn) + (Tn1

− Cαα
n1−1)

∣

∣ < 1.

We divide both sides above by 2m − 2m1 getting
∣

∣

∣

∣

Cα(α
n−n1 − 1)

2m−m1 − 1
αn1−12−m1 − 1

∣

∣

∣

∣

<
1

2m − 2m1

≤ 2

2m

<
α2

αn−4
= α6−n,(14)

because 2 < α2 and αn−4 < 2m. To find a lower-bound on the left–hand side
above, we use again Theorem 2 with the data t = 3 and

γ1 =
Cα(α

n−n1 − 1)

2m−m1 − 1
, γ2 = α, γ3 = 2, b1 = 1, b2 = n1 − 1, b3 = −m1.

We also take B = n and we have K = Q(α) with D = 3. By using properties
of the logarithmic height function, we have

3h(γ1) ≤ 3
(

h(Cα) + h(αn−n1 − 1) + h(2m−m1 − 1)
)

< log 352 + (n− n1) logα+ 3(m−m1) log 2

< 5.2× 1026(1 + logn)2,

where in the above chain of inequalities we used the argument from (11) as well
as the bounds (13). So, we can take A1 = 5.2× 1026(1 + logn)2, and certainly
A2 = logα and A3 = 3 log 2. We need to show that if we put

Λ3 =
Cα(α

n−n1 − 1)

2m−m1 − 1
αn1−12−m1 − 1,

then Λ3 6= 0. But Λ3 = 0 leads to

Cα(α
n−n1 − 1)αn1−1 = 2m − 2m1 ,

which upon conjugation by the automorphism (αβ) and taking absolute value
leads to a contradiction as before. Thus, Λ3 6= 0. Theorem 2 gives

log |Λ3|
>− 1.4×306×34.5×32(1+log 3)(1+logn)(5.2×1026(1+logn)2)(logα)(3 log 2),



ON PILLAI’S PROBLEM WITH TRIBONACCI NUMBERS AND POWERS OF 2 1077

which together with (14) gives

(n− 6) logα < 1.8× 1039(1 + logn)3.

Thus, n < 4× 1045.
We now need to reduce the above bound for n and to do so several times we

make use of Lemma 3. To begin with, we return to (9) and put

z = (n− 1) logα−m log 2 + logCα.

For technical reason we assume that min{n − n1,m −m1} ≥ 20. In the case
that this condition fails we consider one of the following inequalities instead:

(i) if n− n1 < 20 but m−m1 ≥ 20, we consider (10);
(ii) if n− n1 ≥ 20 but m−m1 < 20, we consider (12);
(iii) if both n− n1 < 20 and m−m1 < 20, we consider (14).

Let us start by considering (9). Note that z 6= 0; thus, we distinguish the
following cases. If z > 0, then ez − 1 > 0, so from (9) we obtain

0 < z < ez − 1 < max{αn1−n+6, 2m1−m+1}.
Suppose now that z < 0. Since |Λ| = |ez − 1| < 1/2, we get that e|z| < 2.
Therefore

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| < 2max{αn1−n+6, 2m1−m+1}.
In any case, we have that the inequality

(15) 0 < |z| < 2max{αn1−n+6, 2m1−m+1}
always holds. Replacing z in the above inequality by its formula and dividing
through by log 2, we conclude that

0 <

∣

∣

∣

∣

(n− 1)

(

logα

log 2

)

−m+
logCα

log 2

∣

∣

∣

∣

< max{190 · α−(n−n1), 6 · 2−(m−m1)}.

We apply Lemma 3 with

τ =
logα

log 2
, µ =

logCα

log 2
, (A,B) = (190, α), or (6, 2).

We let τ = [a0, a1, a2, . . .] = [0, 1, 7, 3, 1, 1, 1, 4, . . .] be the continued fraction of
τ . We take M = 4 × 1045 which is an upper bound on n. We find that the
convergent p/q = p86/q86 is such that q > 6M . By using this we have ε > 0.43,
therefore either

n− n1 <
log(190q/0.43)

logα
< 186, or m−m1 <

log(6q/0.43)

log 2
< 159.

Thus, we have that either n− n1 ≤ 190, or m−m1 ≤ 160.
First, let us assume that n − n1 ≤ 190. In this case we consider inequality

(10) and assume that m−m1 ≥ 20. We put

z1 = (n1 − 1) logα−m log 2 + log
(

Cα(α
n−n1 − 1)

)

.
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By the same arguments used for proving (15), from (10) we get that

0 < |z1| <
4

2m−m1

,

and so

(16) 0 <

∣

∣

∣

∣

(n1 − 1)

(

logα

log 2

)

−m+
log(Cα(α

n−n1 − 1))

log 2

∣

∣

∣

∣

< 6 · 2−(m−m1).

We keep the same τ, M, q, (A,B) = (6, 2) and put

µk =
log(Cα(α

k − 1))

log 2
, k = 1, 2, . . . , 190.

We now apply Lemma 3 to inequality (16) for the values of k ∈ [1, 190]. A com-
puter search with Mathematica revealed that if k ∈ [1, 190], then the maximum
value of log(Aq/ǫk)/ logB is < 170. Hence, m−m1 ≤ 170.

Now let us assume that m −m1 ≤ 160 and let us consider inequality (12).
We write

z2 = (n− 1) logα−m1 log 2 + log(Cα(2
m−m1 − 1))

and we assume that n− n1 ≥ 20. Then

0 < |z2| <
2α6

αn−n1

.

Replacing z2 in the above inequality by its formula and dividing through by
log 2, we finally arrive at

0 <

∣

∣

∣

∣

(n− 1)

(

logα

log 2

)

−m1 +
log(Cα(2

m−m1 − 1))

log 2

∣

∣

∣

∣

< 112 · α−(n−n1).

We apply again Lemma 3 with the same τ, q, M , (A,B) = (112, α) and

µk =
log(Cα(2

k − 1)))

log 2
for k = 1, 2, . . . , 160.

As before, a computer search with Mathematica revealed that if k ∈ [1, 160],
then the maximum value of log(Aq/ǫk)/ logB is < 192. Hence, n− n1 ≤ 200.

To conclude the above computations, we first got that either n − n1 ≤ 190
or m−m1 ≤ 160. If n− n1 ≤ 190, then m−m1 ≤ 170, and if m−m1 ≤ 160,
then n− n1 ≤ 200. In conclusion, we always have that

n− n1 ≤ 200 and m−m1 ≤ 170.

Finally, we go to (14). We put

z3 = (n1 − 1) logα−m1 log 2 + log

(

Cα(α
n−n1 − 1)

2m−m1 − 1

)

.

Since n > 250, from (14) we deduce that

0 < |z3| <
2α6

αn
.
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Hence,

0 <

∣

∣

∣

∣

∣

(n1 − 1)

(

logα

log 2

)

−m1 +
log
(

Cα(α
k − 1)/(2ℓ − 1)

)

log 2

∣

∣

∣

∣

∣

< 112 · α−n,

where (k, ℓ) := (n − n1,m − m1). We apply again Lemma 3 with the same
τ, M, q, (A,B) = (112, α) and

µk,ℓ =
log
(

Cα(α
k − 1)/(2ℓ − 1)

)

log 2
for 1 ≤ k ≤ 200, 1 ≤ l ≤ 170.

With the help of Mathematica we find that if k ∈ [1, 200] and ℓ ∈ [1, 170],
then the maximum value of log(112q/ǫ)/ logα is < 205. Thus, n < 205, which
contradicts our assumption that n > 250. Theorem 1 is therefore proved.
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[7] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart.

J. Math. Oxford Ser. (2) 49 (1998), no. 195, 291–306.
[8] A. Herschfeld, The equation 2x − 3y = d, Bull. Amer. Math. Soc. 41 (1935), 631.
[9] , The equation 2x − 3y = d, Bull. Amer. Math. Soc. 42 (1936), no. 4, 231–234.

[10] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in

logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), no. 6,
125–180; translation in Izv. Math. 64 (2000), no. 6, 1217–1269.
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[16] R. J. Stroeker and R. Tijdeman, Diophantine equations, in Computational Methods in
Number Theory, Part II, , 321–369, vol. 155 of Math. Centre Tracts, Math. Centrum,
Amsterdam, 1982.

Jhon J. Bravo

Departamento de Matemáticas
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