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EQUIVALENT CONDITIONS OF COMPLETE MOMENT

CONVERGENCE AND COMPLETE INTEGRAL

CONVERGENCE FOR NOD SEQUENCES

Xin Deng and Xuejun Wang

Abstract. In this paper, seven equivalent conditions of complete mo-
ment convergence and complete integral convergence for negatively or-

thant dependent (NOD, in short) sequences are shown under two cases:

identical distribution and stochastic domination. The results obtained in
the paper improve and generalize the corresponding ones of Liang et al.

[10]). In addition, an extension of the Baum-Katz complete convergence
theorem: six equivalent conditions of complete convergence is established.

1. Introduction

Let {Zn, n ∈ N} be a sequence of random variables and an, bn, q > 0. If

(1.1)

∞∑
n=1

anE{b−1n |Zn| − ε}
q
+ <∞ for all ε > 0,

then the above result was called the complete moment convergence by Chow [6].
It is easy to show that it is a more general concept than complete convergence.

Recently, based on the Baum-Katz complete convergence theorem (see Baum
and Katz [2]) and complete moment convergence of Chow [6], Li and Spătaru
[9] investigated the refinement of complete convergence and established the
following result.

Theorem 1.1. Set {X,Xn, n ≥ 1} be a sequence of independent random vari-
ables with identical distribution. Let EX = 0, and let 0 < p < 2, r ≥ 1 and
q > 0. Set

f(x) =

∞∑
n=1

nr−2P (|Sn| > xn
1
p ), x > 0.
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Then the following are equivalent:

(i)

∫ ∞
ε

f(xq)dx <∞ for all ε > 0;

(ii)


E|X|

1
q <∞, if q < 1

pr ,

E|X|pr log+ |X| <∞, if q = 1
pr ,

E|X|pr <∞, if q > 1
pr .

Chen and Wang [5] showed that the refinement of compete convergence and
complete moment convergence are equivalent, that is to say, (1.1) is equivalent
to

(1.2)

∫ ∞
ε

∞∑
n=1

anP (|Zn| > ε
1
q bn)dx <∞, ∀ ε > 0.

Later, Liang et al. [10] referred to (1.2) as being a complete integral conver-
gence. Obviously, it can exactly describe the convergence rate of a sequence of
random variables than complete convergence.

Furthermore, Liang et al. [10] extended the i.i.d. assumption to identically
distributed and negatively associated (NA, in short) random variables and ob-
tained the following new version.

Theorem 1.2. Let {X,Xn, n ≥ 1} be a sequence of identically distributed NA
random variables. Let 0 < p < 2, r > 1, q > 0, and let

f(x) =

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Sk| > xn

1
p

)
, x > 0.

Then the following are equivalent:

(i)

∞∑
i=1

nr−2−
1
pqE

(
max

1≤k≤n
|Sk| − εn

1
pq

)+

<∞ for all ε > 0;

(ii)

∫ ∞
ε

f(xq)dx <∞ for all ε > 0;

(iii)


E|X|

1
q <∞, if q < 1

pr ,

E|X|pr log+ |X| <∞, if q = 1
pr ,

E|X|pr <∞, if q > 1
pr ,

EX = 0, when 1 ≤ p < 2.

Inspired by Theorem 1.2, we will establish seven equivalent conditions of
complete moment convergence and complete integral convergence for nega-
tively orthant dependent (NOD, in short) sequence under two cases: identical
distribution and stochastic domination. These results will improve and extend
Theorem 1.2 for NA random variables to a more general case: NOD random
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variables. In addition, we get six equivalent conditions of complete conver-
gence, which can be regarded as the extension of the Baum-Katz complete
convergence theorem in Baum and Katz [2].

Now let us recall the concept of NOD random variables as follows.

Definition 1.1. A finite collection of random variables X1, X2, . . . , Xn is said
to be negatively upper orthant dependent (NUOD) if for all numbers x1, x2, . . .,
xn,

(1.3) P (X1 > x1, X2 > x2, . . . , Xn > xn) ≤
n∏
i=1

P (Xi > xi)

and negatively lower orthant dependent (NLOD) if for all numbers x1, x2, . . .,
xn,

(1.4) P (X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) ≤
n∏
i=1

P (Xi ≤ xi).

A finite collection of random variables X1, X2, . . . , Xn is said to be negatively
orthant dependent (NOD) if they are both NUOD and NLOD. An infinite
sequence {Xn, n ≥ 1} is said to be NOD if every finite subcollection is NOD.

The concept of NOD random variables was introduced by Joag-Dev and
Proschan [8]. Obviously, independent random variables are NOD. Joag-Dev
and Proschan [8] pointed out that NA random variables are NOD, but neither
being NUOD nor being NLOD implies being NA. Meanwhile, Hu [7] introduced
the concept of negatively superadditive dependence (NSD, in short) and pointed
out that NSD implies NOD (see Property 2 of Hu [7]). So we can see that NOD
is much weaker than NA and NSD. A number of useful results for NOD random
variables have been established by many authors. We refer to Volodin [19] for
the Kolmogorov exponential inequality, Asadian et al. [1] for Rosenthal’s type
inequality, Zarei and Jabbari [28], Wu [24], Wang et al. [20], Sung [18], Yi
et al. [27] and Chen and Sung [4] for complete convergence, Wang et al. [21]
and Sung [17] for exponential inequalities, Wu and Jiang [25] for the strong
consistency of M estimator in a linear model, Shen [12, 14] for strong limit
theorems of weighted sums, Shen [15] for the asymptotic approximation of
inverse moments, Wang and Si [22] for the complete consistency of estimator
of nonparametric regression model, Qiu et al. [11] and Wu and Volodin [26] for
the complete moment convergence, and so on.

The following concept of stochastic domination will be used in this work.

Definition 1.2. A sequence {Xn, n ≥ 1} of random variables is said to be
stochastically dominated by a random variable X if there exists a positive
constant C such that

P (|Xn| > x) ≤ CP (|X| > x)

for all x ≥ 0 and n ≥ 1.
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Throughout this paper, let I(A) be the indicator function of the set A and let
bxc be the integer part of x. The symbol C denotes a positive constant which
is not necessarily the same one in each appearance. Denote X+ = XI(X >
0), X− = −XI(X < 0) and log x = ln max{x, e}, where ln is the natural
logarithm. an ≈ bn stands for an ≤ C1bn and an ≥ C2bn, where C1 and C2 are
positive real numbers.

2. Preliminaries

In this section, we will present some important lemmas which will be used
to prove the main results of the paper.

The first one is a basic property for NOD random variables, which was
established by Bozorgnia et al. [3].

Lemma 2.1. Let random variables X1, X2, . . . , Xn be NOD, and f1, f2, . . . , fn
be all nondecreasing (or nonincreasing) functions, then random variables
f1(X1), f2(X2), . . . , fn(Xn) are NOD.

The next one plays an important role to prove the main results of the paper.
The details of the proof could be referred to Lemma 1.10 of Wu [24].

Lemma 2.2. Let {Xn, n ≥ 1} be a sequence of NOD random variables. Then
there exists a positive constant C such that, for any ε ≥ 0 and all n ≥ 1,[

1− P
(

max
1≤i≤n

|Xi| > ε

)]2 n∑
i=1

P (|Xi| > ε) ≤ CP
(

max
1≤i≤n

|Xi| > ε

)
.

The following one is the Rosential-type maximal inequality which can be
found in Wu [24].

Lemma 2.3. Let {Xn, n ≥ 1} be a sequence of NOD random variables, and
satisfy EXn = 0, E|Xn|q < ∞, q ≥ 2. Then there exists a positive constant
Cq depending only on q such that

E max
1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣
q

≤ C logq n


n∑
i=1

E|Xi|q +

(
n∑
i=1

EX2
i

)q/2 .

Lemma 2.4. Let α ≥ −1, β ≥ 0, and let {Yn, n ≥ 1} be a nondecreasing
sequence of nonnegative random variables. If∑

n≥1

nαP (Yn > xnβ) <∞ for all x > 0,

then
lim
n→∞

P (Yn > xnβ) = 0 for all x > 0.

The details of the above lemma can refer to Lemma 3.4 in Liang et al. [10].
The last one is a basic property for stochastic domination. For the proof,

one can refer to Wu [23] or Shen et al. [16].
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Lemma 2.5. Let {Xn, n ≥ 1} be a sequence of random variables which is
stochastically dominated by a random variable X. For any α > 0 and b > 0,
the following two statements hold:

E|Xn|αI (|Xn| ≤ b) ≤ C1 [E|X|αI (|X| ≤ b) + bαP (|X| > b)] ,

E|Xn|αI (|Xn| > b) ≤ C2E|X|αI (|X| > b) ,

where C1 and C2 are positive constants.

3. Main results and their proofs

Theorem 3.1. Let 0 < p < 2, r > 1, q > 0 and let {X,Xn, n ≥ 1} be a
sequence of NOD random variables with identical distribution. Assume further

that EX = 0 when 1 ≤ p < 2. Denote Sn =
∑n
i=1Xi, S

(k)
n = Sn − Xk,

k = 1, 2, . . . , n, n ≥ 1, and

f(x) =
∞∑
n=1

nr−2P

(
max

1≤k≤n
|Sk| > xn

1
p

)
, x > 0.

Then the following statements are equivalent:

(i)

∫ ∞
ε

f(xq)dx <∞ for all ε > 0;

(ii)

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Sk|

1
q − εn

1
pq

)+

<∞ for all ε > 0;

(iii)


E|X|

1
q <∞, if q < 1

pr ,

E|X|pr log |X| <∞, if q = 1
pr ,

E|X|pr <∞, if q > 1
pr ;

(iv)

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|S(k)
n |

1
q − εn

1
pq

)+

<∞ for all ε > 0;

(v)

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Xk|

1
q − εn

1
pq

)+

<∞ for all ε > 0;

(vi)

∞∑
n=1

nr−2E

(
sup
k≥n

k−
1
pq |Sk|

1
q − ε

)+

<∞ for all ε > 0;

(vii)

∞∑
n=1

nr−2E

(
sup
k≥n

k−
1
pq |Xk|

1
q − ε

)+

<∞ for all ε > 0.

Proof. In order to prove the equivalence of the above seven statements, we will
give proving process as the order in the following chart:
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(iv) (v)

(ii) (i) (iii)

(vi) (vii)

(ii)⇒(iv): Note that

|S(k)
n | = |Sn −Xk| ≤ |Sn|+ |Xk| ≤ |Sn|+ |Sk|+ |Sk−1| ≤ 3 max

1≤k≤n
|Sn|.

Thus, we have

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|S(k)
n |

1
q − εn

1
pq

)+

=

∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|S(k)
n |

1
q − εn

1
pq > x

)
dx

≤
∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|Sn|

1
q > 3−

1
q εn

1
pq + 3−

1
q x

)
dx

= 3
1
q

∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|Sn|

1
q − 3−

1
q εn

1
pq > y

)
dy

(letting x = 3
1
q y)

= 3
1
q

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Sn|

1
q − ε0n

1
pq

)+

(ε0 = 3−
1
q ε) <∞.(3.1)

(iv)⇒(v): Note that

|Xk| = |Sn − S(k)
n | ≤

∣∣∣∣∣ 1

n− 1

n∑
k=1

S(k)
n

∣∣∣∣∣+ |S(k)
n | ≤ 3 max

1≤k≤n
|S(k)
n |,

which together with the similar proof of (3.1) yields (v).
(v)⇒(iii): It is easy to see that

∞ >

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Xk|

1
q − εn

1
pq

)+

=

∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|Xk|

1
q − εn

1
pq > x

)
dx

≥
∞∑
n=1

nr−2−
1
pq

∫ εn
1
pq

0

P

(
max

1≤k≤n
|Xk|

1
q − εn

1
pq > x

)
dx
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≥ ε
∞∑
n=1

nr−2P

(
max

1≤k≤n
|Xk|

1
q > 2εn

1
pq

)
,(3.2)

which implies that

(3.3)

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Xk|

1
q > εn

1
pq

)
<∞, ∀ ε > 0.

Then by Lemma 2.4, we get

(3.4) P

(
max

1≤k≤n
|Xk|

1
q > εn

1
pq

)
→ 0, n→∞, ∀ ε > 0.

From (3.4), we can see that for ∀ x ≥ 0, ε > 0,

P

(
max

1≤k≤n
|Xk|

1
q > εn

1
pq + x

)
→ 0, n→∞.

Therefore, it follows from Lemma 2.2 that, for sufficiently large n,

P

(
max

1≤k≤n
|Xk|

1
q > εn

1
pq + x

)
≥ C

n∑
k=1

P
(
|Xk|

1
q > εn

1
pq + x

)
, ∀ x ≥ 0 and ε > 0.

Taking ε = 1 in (v) and combining with the above inequality, we can obtain
that

∞ >

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Xk|

1
q − n

1
pq

)+

=

∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|Xk|

1
q > n

1
pq + x

)
dx

≥ C
∞∑
n=1

nr−2−
1
pq

∫ ∞
0

n∑
k=1

P
(
|Xk|

1
q > n

1
pq + x

)
dx

= C

∞∑
n=1

nr−1−
1
pq

∫ ∞
0

P
(
|X|

1
q > n

1
pq + x

)
dx

= C

∞∑
n=1

nr−1−
1
pq

∫ ∞
n

1
pq

P (|X| > yq) dy (letting y = x+ n
1
pq )

= C

∞∑
n=1

nr−1−
1
pq

∞∑
m=n

∫ (m+1)
1
pq

m
1
pq

P (|X| > yq)dy

≈ C
∞∑
n=1

nr−1−
1
pq

∞∑
m=n

m
1
pq−1P (|X| > m

1
p )
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= C

∞∑
m=1

m
1
pq−1P (|X| > m

1
p )

m∑
n=1

nr−1−
1
pq

≈


C
∞∑
m=1

m
1
pq−1P (|X| > m

1
p ), if q < 1

pr

C
∞∑
m=1

m
1
pq−1 logmP (|X| > m

1
p ), if q = 1

pr

C
∞∑
m=1

mr−1P (|X| > m
1
p ), if q > 1

pr

=



C
∞∑
m=1

m
1
pq−1

∞∑
j=m

P (j
1
p < |X| ≤ (j + 1)

1
p ), if q < 1

pr

C
∞∑
m=1

m
1
pq−1 logm

∞∑
j=m

P (j
1
p < |X| ≤ (j + 1)

1
p ), if q = 1

pr

C
∞∑
m=1

mr−1
∞∑
j=m

P (j
1
p < |X| ≤ (j + 1)

1
p ), if q > 1

pr

=



C
∞∑
j=1

P (j
1
p < |X| ≤ (j + 1)

1
p )

j∑
m=1

m
1
pq−1, if q < 1

pr

C
∞∑
j=1

P (j
1
p < |X| ≤ (j + 1)

1
p )

j∑
m=1

m
1
pq−1 logm, if q = 1

pr

C
∞∑
j=1

P (j
1
p < |X| ≤ (j + 1)

1
p )

j∑
m=1

mr−1, if q > 1
pr

≈



C
∞∑
j=1

j
1
pqP (j

1
p < |X| ≤ (j + 1)

1
p ), if q < 1

pr

C
∞∑
j=1

jr log jP (j
1
p < |X| ≤ (j + 1)

1
p ), if q = 1

pr

C
∞∑
j=1

jrP (j
1
p < |X| ≤ (j + 1)

1
p ), if q > 1

pr

≈


CE|X|

1
q , if q < 1

pr

CE|X|pr log |X|, if q = 1
pr

CE|X|pr, if q > 1
pr .

(3.5)

Due to the above proof, (iii) holds immediately.
(ii)⇒(vi): It follows from (ii) that

∞∑
n=1

nr−2E

(
sup
k≥n

k−
1
pq |Sk|

1
q − ε

)+

=

∞∑
n=1

nr−2
∫ ∞
0

P

(
sup
k≥n

k−
1
pq |Sk|

1
q > ε+ t

)
dt

=

∞∑
i=1

2i−1∑
n=2i−1

nr−2
∫ ∞
0

P

(
sup
k≥n

k−
1
pq |Sk|

1
q > ε+ t

)
dt
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≤ C

∞∑
i=1

2i(r−1)
∫ ∞
0

P

(
sup

k≥2i−1

k−
1
pq |Sk|

1
q > ε+ t

)
dt

≤ C

∞∑
i=1

2i(r−1)
∞∑
j=i

∫ ∞
0

P

(
max

2j−1≤k<2j
k−

1
pq |Sk|

1
q > ε+ t

)
dt

= C

∞∑
j=1

∫ ∞
0

P

(
max

2j−1≤k<2j
k−

1
pq |Sk|

1
q > ε+ t

)
dt

j∑
i=1

2i(r−1)

≤ C

∞∑
j=1

2j(r−1)
∫ ∞
0

P

(
max

2j−1≤k<2j
k−

1
pq |Sk|

1
q > ε+ t

)
dt

≤ C

∞∑
j=1

2j(r−1)
∫ ∞
0

P

(
max

1≤k≤2j
|Sk|

1
q > 2

j−1
pq (ε+ t)

)
dt

≤ C

∞∑
j=1

2j(r−1−
1
pq )

∫ ∞
0

P

(
max

1≤k≤2j
|Sk|

1
q > 2

j−1
pq ε+ x

)
dx (letting x = 2

j−1
pq t)

≤ C

∞∑
j=0

2j+1∑
n=2j

2j(r−2−
1
pq )

∫ ∞
0

P

(
max

1≤k≤2j
|Sk|

1
q > 2−

2
pq · 2

j+1
pq ε+ x

)
dx

≤ C

∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|Sk|

1
q > 2−

2
pq n

1
pq ε+ x

)
dx

= C

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Sk|

1
q − ε0n

1
pq

)+

(ε0 = 2−
2
pq ε)

< ∞.

(vi)⇒(vii): Noting that

k−
1
p |Xk| = k−

1
p |Sk − Sk−1|

≤ k−
1
p (|Sk|+ |Sk−1|)

≤ k−
1
p |Sk|+ (k − 1)−

1
p |Sk−1|

≤ 2 sup
j≥k−1

j−
1
p |Sj |, k ≥ 2

and similar to the proof of (3.1), we can get (vii) immediately.
(vii)⇒(iii): Similar to the proofs of (3.2) and (3.3), we have by (vii) that

(3.6)

∞∑
n=1

nr−2P

(
sup
k≥n

k−
1
pq |Xk|

1
q > ε

)
<∞, ∀ ε > 0.

Thus,

(3.7) lim
n→∞

P

(
sup
k≥n

k−
1
pq |Xk|

1
q > ε

)
= 0, ∀ ε > 0.
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Otherwise, there exist ε0 > 0, δ > 0 and a positive sequence {nj , j ≥ 1} with
nj ↑ ∞, such that

P

(
sup
k≥nj

k−
1
pq |Xk|

1
q > ε0

)
≥ δ, ∀ j ≥ 1.

Without loss of generality, we assume nj + 1 < nC0
j+1 as j sufficiently large,

where 0 < C0 < 1. Thereby, we have by r > 1 that

∞∑
n=1

nr−2P

(
sup
k≥n

k−
1
pq |Xk|

1
q > ε0

)

≥
∞∑
j=1

blognj+1c∑
n=blog(nj+1)c

nr−2P

(
sup
k≥n

k−
1
pq |Xk|

1
q > ε0

)

≥
∞∑
j=1

(blog(nj + 1)c)r−1
(

1− blog (nj + 1)c
blog nj+1c

)
P

(
sup

k≥blognj+1c
k−

1
pq |Xk|

1
q > ε0

)

≥ C

∞∑
j=1

(log nj)
r−1P

(
sup

k≥blognj+1c
k−

1
pq |Xk|

1
q > ε0

)

≥ C

∞∑
j=1

(log nj)
r−1P

(
sup

k≥nj+1

k−
1
pq |Xk|

1
q > ε0

)
=∞,

which is contradictory with (3.6). Hence (3.7) holds. Note that for ∀ ε > 0 and
n ≥ 1,

P

(
max

n≤k<2n
k−

1
pq |Xk|

1
q > ε

)
≤ P

(
sup
k≥n

k−
1
pq |Xk|

1
q > ε

)
,

which together with (3.7) yields that

lim
n→∞

P

(
max

n≤k<2n
k−

1
pq |Xk|

1
q > ε

)
= 0, ∀ ε > 0.

Taking ε = 2−
1
pq +x, x ≥ 0 in the above equality, we have by Lemma 2.2 that,

for sufficiently large n,

P

(
max

n≤k<2n
k−

1
pq |Xk|

1
q > 2−

1
pq + x

)
≥ C

2n−1∑
k=n

P
(
k−

1
pq |Xk|

1
q > 2−

1
pq + x

)
≥ C

2n−1∑
k=n

P (|Xk|
1
q > (2n)

1
pq (2−

1
pq + x))

= CnP (|X|
1
q > (2n)

1
pq (2−

1
pq + x)).(3.8)
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Consequently, taking ε = 2−
1
pq in (vii), we have by (3.8) that,

∞ >

∞∑
n=1

nr−2E

(
sup
k≥n

k−
1
pq |Xk|

1
q − 2−

1
pq

)+

=

∞∑
n=1

nr−2
∫ ∞
0

P

(
sup
k≥n

k−
1
pq |Xk|

1
q > 2−

1
pq + x

)
dx

≥
∞∑
n=1

nr−2
∫ ∞
0

P

(
max

n≤k<2n
k−

1
pq |Xk|

1
q > 2−

1
pq + x

)
dx

≥ C
∞∑
n=1

nr−1
∫ ∞
0

P
(
|X|

1
q > (2n)

1
pq (2−

1
pq + x)

)
dx

= C

∞∑
n=1

nr−1−
1
pq

∫ ∞
n

1
pq

P (|X| > yq) dy (letting y = (2n)
1
pq (2−

1
pq + x)).

The rest proof is similar to (3.5). Hence, (iii) is proved by (vii).
(iii)⇒(i): The proof can refer to Theorem 2.1 in Liang et al. [10]. But there

are several differences, which will be listed as follows.

(1) In the process of proving
∞∑
n=1

nr−2
∫∞
1
P

(
max

1≤k≤n
|Sk| > xqn

1
p

)
dx <∞:

(a) According to the definition of Xni(4), we can get

I4 =

∞∑
n=1

nr−2
∫ ∞
1

P

 max
1≤k≤n

∣∣∣∣∣∣
∑

1≤i≤k

Xni(4)

∣∣∣∣∣∣ > xqn
1
p

4

 dx

≤
∞∑
n=1

nr−2
∫ ∞
1

P

(
n⋃
i=1

(|Xi| > xqn
1
p /4N)

)
dx

≤
∞∑
n=1

nr−1
∫ ∞
1

P

(
|X| > xqn

1
p

4N

)
dx

=

∞∑
n=1

nr−1−
1
pq

∫ ∞
n

1
pq

P

(
|X| > yq

4N

)
dy (letting x = n−

1
pq y),(3.9)

which together with proof of (3.5) yields that I4 <∞.
(b) Applying Lemma 2.3, Cr inequality and Jensen’s inequality to I∗1 , we

have

I∗1 ≤ C

∞∑
n=1

nr−2−
M
p (log n)M

∫ ∞
1

x−Mq


(

n∑
i=1

E(Xni(1)− EXni(1))2

)M/2
 dx

+ C

∞∑
n=1

nr−2−
M
p (log n)M

∫ ∞
1

x−Mq

{
n∑
i=1

E|Xni(1)− EXni(1)|M
}
dx
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≤ C

∞∑
n=1

nr−2−
M
p (log n)M

∫ ∞
1

x−Mq


(

n∑
i=1

EX2
ni(1)

)M/2

+

n∑
i=1

E|Xni(1)|M
 dx

=: I11 + I12.

By the choice of M in Liang et al. [10], we can still get I∗1 <∞.
(2) There are no detailed proof in Liang et al. [10] for

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Sk| > εqn

1
p

)
<∞.

Here we give the details.
To begin with, by the truncation in Liang et al. [10], we have

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Sk| > εqn

1
p

)

≤
∞∑
n=1

nr−2P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Xni(1)

∣∣∣∣∣ > εqn
1
p

4

)

+

∞∑
n=1

nr−2P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Xni(2)

∣∣∣∣∣ > εqn
1
p

4

)

+

∞∑
n=1

nr−2P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Xni(3)

∣∣∣∣∣ > εqn
1
p

4

)

+

∞∑
n=1

nr−2P

(
max

1≤k≤n

∣∣∣∣∣
k∑
i=1

Xni(4)

∣∣∣∣∣ > εqn
1
p

4

)
=: J1 + J2 + J3 + J4.(3.10)

Analogously to (3.9) and E|X|pr <∞ (implied by (iii)), we have

J4 ≤
∞∑
n=1

nr−1P

(
|X| > εqn

1
p

4N

)

=

∞∑
n=1

nr−1
∞∑
i=n

P

(
εqi

1
p

4N
< |X| ≤ εq(i+ 1)

1
p

4N

)

=

∞∑
i=1

P

(
εqi

1
p

4N
< |X| ≤ εq(i+ 1)

1
p

4N

)
i∑

n=1

nr−1

≤ C
∞∑
i=1

irP

(
εqi

1
p

4N
< |X| ≤ εq(i+ 1)

1
p

4N

)
≤ CE|X|pr <∞.
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Replacing x by ε and removing the sign of integral in the proof of I1 < ∞,
I2 < ∞ and I3 < ∞ in Liang et al. [10], we can easily get J1 < ∞, J2 < ∞
and J3 <∞, respectively. This completes the proof for (iii)⇒(i).

(ii)⇔(i): Actually,

∞∑
n=1

nr−2−
1
pqE

(
max

1≤k≤n
|Sk|

1
q − εn

1
pq

)+

=

∞∑
n=1

nr−2−
1
pq

∫ ∞
0

P

(
max

1≤k≤n
|Sk|

1
q − εn

1
pq > t

)
dt

=

∞∑
n=1

nr−2
∫ ∞
ε

P

(
max

1≤k≤n
|Sk|

1
q > xn

1
pq

)
dx (letting t = n

1
pq (x− ε))

=

∫ ∞
ε

f(xq)dx.

Hence we get that (ii) is equivalent to (i). �

It is well known that complete moment convergence can imply complete
convergence, therefore we can get the following corollary.

Corollary 3.1. Let 0 < p < 2, r > 1, and let {X,Xn, n ≥ 1} be a sequence of
NOD random variables with identical distribution. Assume further that EX =

0 when 1 ≤ p < 2. Denote Sn =
n∑
i=1

Xi, S
(k)
n = Sn−Xk, k = 1, 2, . . . , n, n ≥ 1.

Then the following statements are equivalent:

(I) E|X|pr <∞;

(II)

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Sk| > εn

1
p

)
<∞ for all ε > 0;

(III)

∞∑
n=1

nr−2P

(
max

1≤k≤n
|S(k)
n | > εn

1
p

)
<∞ for all ε > 0;

(IV)

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Xk| > εn

1
p

)
<∞ for all ε > 0;

(V)

∞∑
n=1

nr−2P

(
sup
k≥n

k−
1
p |Sk| > ε

)
<∞ for all ε > 0;

(VI)

∞∑
n=1

nr−2P

(
sup
k≥n

k−
1
p |Xk| > ε

)
<∞ for all ε > 0.

Proof. The proof can be shown as the order in the following chart:
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(III) (IV)

(II) (I)

(V) (VI)

At first, we prove (IV) ⇒ (I). By (3.3), (3.4) and Lemma 2.2, we get that for
sufficiently large n,

(3.11) P

(
max

1≤k≤n
|Xk| > εn

1
p

)
≥ C

n∑
k=1

P
(
|Xk| > εn

1
p

)
, ∀ ε > 0.

Thus, taking ε = 1 in (IV) and combining with (3.11) and r > 1, we have

∞ >

∞∑
n=1

nr−2P

(
max

1≤k≤n
|Xk| > n

1
p

)

≥ C
∞∑
n=1

nr−2
n∑
k=1

P
(
|Xk| > n

1
p

)
= C

∞∑
n=1

nr−1P
(
|X| > n

1
p

)
= C

∞∑
n=1

nr−1
∞∑
m=n

P (m < |X|p ≤ m+ 1)

= C

∞∑
m=1

P (m < |X|p ≤ m+ 1)

m∑
n=1

nr−1

≥ C
∞∑
m=1

(m+ 1)rP (m < |X|p ≤ m+ 1)

≥ C
∞∑
m=1

E|X|prI (m < |X|p ≤ m+ 1)

≥ CE|X|pr.(3.12)

Next, we prove (VI) ⇒ (I). By taking ε = 2−
1
p in (VI), (3.6), (3.7) and (3.8),

we can obtain

∞ >

∞∑
n=1

nr−2P

(
sup
k≥n

k−
1
p |Xk| > 2−

1
p

)

≥
∞∑
n=1

nr−2P

(
max

n≤k<2n
k−

1
p |Xk| > 2−

1
p

)
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≥ C
∞∑
n=1

nr−1P (|X| > n
1
p ).

The rest proof is the same as (3.12). Hence (I) follows from (VI).
(I) ⇒ (II) can be verified by the similar process of proving (3.10). The

rest proof can be easily obtained by Theorem 3.1. This completes the proof of
corollary. �

Remark 3.1. We point out that Corollary 3.1 can be regarded as an extension
of the Baum-Katz complete convergence theorem (see Baum and Katz [2]).

By Definition 1.2, Lemma 2.5 and the similar proof of Theorem 3.1, we can
get the following result.

Theorem 3.2. Let 0 < p < 2, r > 1, q > 0 and let {Xn, n ≥ 1} be a sequence of
NOD random variables, which is stochastically dominated by a random variable
X. Assume further that EXn = 0 when 1 ≤ p < 2, and

P (|Xn| > x) ≥ CP (|X| > x)

for any x ≥ 0, where C is a positive number. Then (i)-(vii) in Theorem 3.1
are equivalent.

Remark 3.2. Theorems 3.1 and 3.2 also hold for other dependent sequences,
such as negatively associated (NA) sequence, negatively superadditive depen-
dent (NSD) sequence and extended negatively dependent (END, see Shen [13])
sequence. The keys to the proofs of Theorems 3.1 and 3.2 are Lemmas 2.1-2.3,
which are satisfied for NA sequence, NSD sequence and END sequence.

Acknowledgements. The authors are most grateful to the Editor-in-chief
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of this paper.
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