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Abstract. It is well-known that there exists a constant-weight [sθk−1, k,

sqk−1]q code for any positive integer s, which is an s-fold simplex code,

where θj = (qj+1 − 1)/(q − 1). This gives an upper bound nq(k, sqk−1 +
d) ≤ sθk−1 + nq(k, d) for any positive integer d, where nq(k, d) is the
minimum length n for which an [n, k, d]q code exists. We construct a

two-weight [sθk−1 + 1, k, sqk−1]q code for 1 ≤ s ≤ k − 3, which gives a

better upper bound nq(k, sqk−1 + d) ≤ sθk−1 + 1 + nq(k − 1, d) for 1 ≤

d ≤ qs. As another application, we prove that nq(5, d) =
∑4

i=0

⌈

d/qi
⌉

for q4 + 1 ≤ d ≤ q4 + q for any prime power q.

1. Introduction

Let Fq be the finite field of order q. For a nonzero vector x ∈ F
n
q , the weight of

x, denoted by wt(x), is the number of nonzero positions in x. An [n, k, d]q code
C is a k-dimensional linear subspace of Fn

q over Fq with minimum (Hamming)
weight d, where d = min{wt(x) | x ∈ C, x 6= 0}. For an [n, k, d]q code C, let
Ai be the number of codewords in C of weight i. The weight enumerator of C
is defined as a polynomial WC(z) =

∑n
i=0 Aiz

i, where z is an indeterminate.
The optimal linear code problem is to optimize one of the parameters n, k

and d when the other two are given ([3]). In particular, we consider the problem
to find nq(k, d), the minimum length n for which an [n, k, d]q code exists. For
an [n, k, d]q code, there is an important lower bound on the length n which is
called the Griesmer bound. The Griesmer bound, proved by Griesmer [2] for
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binary case and Solomon and Stiffler [10] for arbitrary q, gives the following:

nq(k, d) ≥ gq(k, d) :=

k−1
∑

i=0

⌈

d

qi

⌉

,

where ⌈x⌉ denotes the smallest integer greater than or equal to x. A code
meeting the Griesmer bound is called Griesmer. The values of nq(k, d) are
determined for all d only for some small values of q and k, see [9]. We note that
for k = 1, 2, there are Griesmer codes for all d and hence nq(k, d) = gq(k, d).
So, we only consider k ≥ 3.

An important class of Griesmer codes are s-fold simplex codes, which are
constant-weight [sθk−1, k, sq

k−1]q codes with a positive integer s, where θj =
(qj+1−1)/(q−1) = qj+qj−1+ · · ·+q+1. It is well-known that a large class of
Griesmer codes which are called codes of Belov type can be constructed from
s-fold simplex codes by puncturing if the condition in the following theorem is
satisfied. Belov et al. [8] proved the theorem for q = 2 and Hill [3] generalized
it to arbitrary q.

Theorem 1.1 ([3, Theorem 2.12], [8]). Let d = sqk−1 −
∑p

i=1 q
ui−1 such that

k > u1 ≥ u2 ≥ · · · ≥ up with ui > ui+q−1 for 1 ≤ i ≤ p − q + 1, where

s = ⌈ d
qk−1 ⌉. Then there exists a [gq(k, d), k, d]q code of Belov type if and only

if
∑min{s+1,p}

i=1 ui ≤ sk.

On the other hand, many optimal codes can be constructed from s-fold
simplex codes by extension. The following lemmas are often used to extend
codes from known codes.

Lemma 1.2 ([5]). Let C be an [n, k, d]q code and C′ an [n′, k, d′]q code. Then

there exists an [n+ n′, k, d+ d′]q code.

Lemma 1.3 ([5]). Let C be an [n, k − 1, d]q code and C′ an [n′, k, d′]q code.

If there is a codeword c ∈ C′ with wt(c) ≥ d + d′, then there exists an [n +
n′, k, d+ d′]q code.

One can apply Lemma 1.2 to get the following when the code C′ is an
[sθk−1, k, sq

k−1]q code, but cannot apply Lemma 1.3 since C′ is constant-
weight.

Corollary 1.4. nq(k, sq
k−1 + d) ≤ sθk−1 + nq(k, d) for any positive integer d.

Especially when nq(k, d) = gq(k, d), the extended code is also Griesmer.

Corollary 1.5. nq(k, sq
k−1 + d) = gq(k, sq

k−1 + d) if nq(k, d) = gq(k, d).

For example, we have n5(5, 627) = g5(5, 627) from n5(5, 2) = g5(5, 2). But
when nq(k, d) > gq(k, d), Corollary 1.4 does not always give a good upper
bound on nq(k, sq

k−1 + d). In this paper, we construct a new class of two-
weight [sθk−1 +1, k, sqk−1]q codes for 1 ≤ s ≤ k− 3, which give a better upper
bound on nq(k, sq

k−1 + d). See [1] for two-weight linear codes and related
combinatorial objects. Our main result is the following.



A CONSTRUCTION OF TWO-WEIGHT CODES AND ITS APPLICATIONS 733

Theorem 1.6. For two integers k and s with 1 ≤ s ≤ k − 3, there exists a

two-weight [sθk−1 + 1, k, sqk−1]q code with weight enumerator

WC(z) = 1 + (qk − qk−s + qk−s−1 − 1)zsq
k−1

+ (qk−s − qk−s−1)zsq
k−1+qs .

Theorem 1.6 is a generalization of Lemma 3.2 in [7]. Applying Lemma 1.3
with the [sθk−1 + 1, k, sqk−1]q code in Theorem 1.6 as C′, one can get the
following.

Theorem 1.7. nq(k, sq
k−1+d) ≤ sθk−1+1+nq(k−1, d) for integers 1 ≤ s ≤

k − 3 and 1 ≤ d ≤ qs.

Note that Theorem 1.7 is better than Corollary 1.4 since nq(k, d) ≥ nq(k −
1, d) + 1 [5]. For instance, we have n5(5, 1270 = 20 + 2q4) ≤ g5(5, 1270) + 2
by Corollary 1.4, for n5(5, 20) = g5(5, 20) + 1 or g5(5, 20) + 2, see [9]. But
Theorem 1.7 with q = k = 5 and s = 2 and the Griesmer bound yield that
n5(5, 1270) = g5(5, 1270) since n5(4, 20) = g5(4, 20). Thus one can get Griesmer
codes when nq(k − 1, d) = gq(k − 1, d) by Theorem 1.7 as follows.

Corollary 1.8. Let k, d and s be integers with 1 ≤ s ≤ k − 3 and 1 ≤ d ≤ qs.
Then nq(k, sq

k−1 + d) = gq(k, sq
k−1 + d) if nq(k − 1, d) = gq(k − 1, d).

We have more pairs (k, d) for which nq(k, d) = gq(k, d) holds.

Theorem 1.9. For any q, k and r with 1 ≤ s ≤ k − 3 ≤ q − 1, we have

nq(k, d) = gq(k, d) for sqk−1 ≤ d ≤ sqk−1 + q − k + 3.

From Theorem 1.1, we have nq(k, d) = gq(k, d) for (k−3)qk−1−(k−3)qk−2−
qk−3 + 1 ≤ d ≤ (k− 3)qk−1 if k ≥ 4. Hence, from Theorem 1.9 with s = k− 3,
we get the following.

Corollary 1.10. We have nq(k, d) = gq(k, d) for k ≥ 4 and

(k − 3)qk−1 − (k − 3)qk−2 − qk−3 + 1 ≤ d ≤ (k − 3)qk−1 + q − k + 3.

For k = 5, it is known that nq(5, d) = gq(5, d) for q
4 − 2q2 + 1 ≤ d ≤ q4. As

another application of Theorem 1.6, we expand the known range of Griesmer
codes as follows.

Theorem 1.11. For any q, we have nq(5, d) = gq(5, d) for q
4+1 ≤ d ≤ q4+q.

2. Proof of main results

For a positive integer r, let P
r be the r-dimensional projective space over

Fq. Let θr be the number of points in P
r, that is, θr := qr + · · · + q + 1.

By convention, we let θ0 := 1 and θr := 0 for r < 0. We call a projective
subspace of dimension j in P

r a j-flat. In this paper, points, lines, planes, and
hyperplanes refer to flats of dimension 0, 1, 2, and r − 1 in P

r, respectively.
Let C be an [n, k, d]q code with a generator matrix G. Each column of G can

be regarded as a point of Pk−1 if every column of G is nonzero. The formal sum
of all columns of G as points in P

k−1 is called a 0-cycle of the code C, denoted
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by XC . Denoting m(P ) ≥ 0 the number of times of the point P occurring as a
column of G, we have XC =

∑

P∈Pk−1 m(P )P . We define the degree of XC as

degXC =
∑

P∈Pk−1 m(P ). For a subset S in P
k−1, we denote [S] :=

∑

P∈S P ,
which can be identified with the set S. We denote XC(S) =

∑

P∈S m(P )P the
restriction of XC to S, and mC(S) = degXC(S) =

∑

P∈S m(P ). Then we have
the parameters of C as follows;

n = degXC ,

d = n−max{mC(H) | H is a hyperplane in P
k−1}.

We let

Ci = {P ∈ P
k−1 | m(P ) = i} and γj = max{mC(L) | L is an j-flat in P

k−1}.
Note that γ0 is the maximum multiplicity of points in P

k−1 and we have the
partition P

k−1 = ∪γ0

i=0Ci. When P
k−1 = Cs with positive integer s, C is a

Griesmer [sθk−1, k, sq
k−1]q code, which is called an s-fold simplex code.

There are some interesting Griesmer codes not of Belov type, which are
constructed from geometrical objects in projective geometry. Recall that a t-
arc in P

k−1 means the set of t points, no k points of them are contained in a
hyperplane in P

k−1 ([6]).

Example 2.1. (1) Let C be a linear code of XC = [C], where C is a conic in
P
2. Then the code C is a [q+ 1, 3, q− 1]q Griesmer code. In general, a normal

rational curve is a (q+1)-arc in P
k−1, which corresponds to a [q+1, k, q−k+2]q

Griesmer code for q > k − 2.
(2) Let C be a linear code of XC = [O], where O is an ovoid in P

3. Then
the code C is a [q2 + 1, 4, q2 − q]q Griesmer code.

Proof of Theorem 1.6. For two integers k and r with 2 ≤ r ≤ k − 2, consider
an r-flat ∆ in P

k−1 and q (r − 1)-flats L1, . . . , Lq in ∆ satisfying that no r + 1

of {L1, . . . , Lq} are concurrent. Let C be a code with XC = (r − 1)[Pk−1] +
[∆] −∑q

i=1[Li]. We shall show that C is an [(r − 1)θk−1 + 1, k, (r − 1)qk−1]q
code. More precisely, C is a two-weight code with the weight enumerator

WC(z) = 1+(qk−qk−r+1+qk−r−1)z(r−1)qk−1

+(qk−r+1−qk−r)z(r−1)qk−1+qr−1

.

Note that n = (r−1)θk−1+θr−qθr−1 = (r−1)θk−1+1. Let H be a hyperplane

in P
k−1.

If H contains ∆, then we have XC(H) = (r− 1)[H ] + [∆]−∑q
i=1[Li], hence

mC(H) = (r − 1)θk−2 + θr − qθr−1 = (r − 1)θk−2 + 1. Thus the weight of the
codeword corresponding to H is (r − 1)qk−1.

If H does not contain ∆, then we have two cases. (i) If H contains one of
Li, say L1, then we have XC(H) = (r − 1)[H ] + [L1] −

∑q
i=1[Li ∩ L1], hence

mC(H) = (r−1)θk−2−(q−1)θr−2 and hence we have a weight (r−1)qk−1+qr−1.
Thus the weight of the codeword corresponding to H is (r − 1)qk−1 + qr−1.
(ii) If H does not contain Li for any i = 1, . . . , q, then we have XC(H) =



A CONSTRUCTION OF TWO-WEIGHT CODES AND ITS APPLICATIONS 735

(r−1)[H ]+[∆∩H ]−
∑q

i=1[Li∩H ], hence mC(H) = (r−1)θk−2+θr−1−qθr−2.
Thus the weight of the codeword corresponding to H is (r − 1)qk−1.

Thus C is a two-weight code. The number of codewords of weight (r −
1)qk−1+ qr−1 is (q− 1)#{H | H 6⊃ ∆ and H ⊃ Li for some i = 1, . . . , q} which
is (q − 1)qk−r. Setting s = r − 1, we obtain Theorem 1.6. �

Proof of Corollary 1.8. Since there exists a [gq(k − 1, d), k − 1, d]q code, by
Lemma 1.3 and Theorem 1.6, there exists a [gq(k−1, d)+sθk−1+1, k, d+sqk−1]q
code, say C. Since d ≤ qs we have gq(k, d) = gq(k − 1, d) + ⌈ d

qk−1 ⌉ = gq(k −
1, d) + 1. We express d uniquely as the form d = qk−1 − ∑k−2

i=0 diq
i with

0 ≤ di ≤ q − 1, i = 0, 1, . . . , k − 2. Then gq(k, d) = θk−1 −
∑k−2

i=0 diθi. Since

d+ sqk−1 = (s+ 1)qk−1 −∑k−2
i=0 diq

i, we have

gq(k, d+ sqk−1) = (s+ 1)θk−1 −
k−2
∑

i=0

diθi

= gq(k, d) + sθk−1 = gq(k − 1, d) + 1 + sθk−1

which is just the length of C and we complete the proof. �

Proof of Theorem 1.9. By Example 2.1(1), we have a Griesmer [q+1, k−1, q−
k+3]q code. By Corollary 1.8, we have nq(k, q− k+3+ sqk−1) = gq(k, q− k+
3+ sqk−1). The rest of the codes required for the theorem can be obtained by
puncturing. �

Proof of Theorem 1.11. It suffices to construct a [gq(5, d), 5, d]q code for d =
q4+q. From Theorem 1.6 with k = 5 and r = 2, one can get a [θ4+1, 5, q4]q code
C with non-zero weights q4 and q4 + q. Take a hyperplane H with mC(H) =
θ3+1− q in P

4. Then, H ∩∆ = Lj for some j with 1 ≤ j ≤ q, where the plane
∆ and the q lines L1, . . . , Lq in ∆ are taken as in Theorem 1.6. So, we have
XC(H) = [H ]−∑

i6=j [Li∩Lj ], and we can take q−2 skew lines m1, . . . ,mq−2 in

H which are skew to Lj. Let C
′ be a code with 0-cycle XC′ = XC −∑q−2

i=1 [mi].
Then C′ is a [θ4 + 1− (q − 2)θ1, 5, q

4 − q(q − 2)]q code containing a codeword
of weight q4 + q. Applying Lemma 3 to this C′ and a [q2 + 1, 4, q2 − q]q code
in Example 2.1(2), one can get a Griesmer [θ4 + q + 4, 5, q4 + q]q code. �
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