References
- Bamsley, M. F., 1993, Fractals Everywhere, 2nd ed., New York: Academic Press Professional.
- Peitgen, H. O., Jurgens, H. and Saupe, D., 2004, Chaos and Fractals: New Frontiers of Science, New York: Springer-Verlag.
- Carles Puente-Baliarda, Jordi Romeu, Rafael Pous, Angel Cardama, 1998, On the Behavior of the Sierpinski Multiband Fractal Antenna, IEEE Transactions of Antennas and Propagation, 46(4), pp.517-524. https://doi.org/10.1109/8.664115
- Jena, M.R., Mangaraj, B.B. and Pathak, R., 2014, Design of a Novel Sierpinski Fractal Antenna Arrays Based on Circular Shapes with Low Side Lobes for 3G Applications, American Journal of Electrical and Electronic Engineering, 2(4), pp.137-140. https://doi.org/10.12691/ajeee-2-4-3
- Sanchez-Molinaa, D., Velazquez-Ameijidea, J., Quintanaa, V., Arregui-Dalmasesa, C., Crandallb, J. R., Subitb, D. and Kerriganb, J.R., 2013, Fractal Dimension and Mechanical Properties of Human Cortical Bone, Medical Engineering & Physics, 35, pp.576-582. https://doi.org/10.1016/j.medengphy.2012.06.024
- Giannitelli, S.M., Accoto, D., Trombetta, M. and Rainer, A., 2014, Current Trends in the Design of Scaffolds for Computer-aided Tissue Engineering, Acta Biomaterialia, 10, pp.580-594. https://doi.org/10.1016/j.actbio.2013.10.024
- Langer, R. and Vacanti J.P., 1993, Tissue Engineering, Science, 260(5110), pp.920-926. https://doi.org/10.1126/science.8493529
- Park, J.W., Lee, J.H., Cho, H.U., Lee, S.H., Park, S.A. and Kim, W.D., 2012, Development of Scaffold Fabrication System using Multi-axis RP software Technique, Journal of the Korean Society for Precision Engineering, 29(1), pp.3340.
- Lipowiecki, M. et al., 2014, Permeability of Rapid Prototyped Artificial Bone Scaffold Structures, Journal of Biomedical Materials Research, 102A(11), pp.4127-4135.
- Asadi-Eydivand, M., Solati-Hashjin, M., Farzad, A. and Osman, N., 2016, Effect of Technical Parameters on Porous Structure and Strength of 3D Printed Calcium Sulfate Prototypes, Robotics and Computer-Integrated Manufacturing, 37, pp.57-67. https://doi.org/10.1016/j.rcim.2015.06.005
- Syahrom, A., Kadir, M., Abdullah, J. and Ochsner, A., 2013, Permeability Studies of Artificial and Natural Cancellous Bone Structures, Medical Engineering & Physics, 35, pp.792-799. https://doi.org/10.1016/j.medengphy.2012.08.011
- Gomez, S., Vlad, M.D., Lopez, J. and Fernandez, E., 2016, Design and Properties of 3D Scaffolds for Bone Tissue Engineering, Acta Biomaterialia, 42, pp.341-350. https://doi.org/10.1016/j.actbio.2016.06.032
- Li, X., 2010, Fabrication and Compressive Properties of Ti6Al4V Implant with Honeycomb-like Structure for Biomedical Applications, Rapid Prototyping Journal, 16(1), pp.44-49. https://doi.org/10.1108/13552541011011703
- Lee, S., Ahn, S.H. and Cho, Y., 2013, Assessment of Mechanical Characteristics of Scaffold via Computational Analysis and Compressive Test, Journal of Korean Society of Mechanical Technology, 15(6), pp.937-941. https://doi.org/10.17958/ksmt.15.6.201312.937
- Wieding, J., Souffrant, R., Mittelmeier, W. and Bader, R., 2013, Finite Element Analysis on the Biomechanical Stability of Open Porous Titanium Scaffolds for Large Segmental Bone Defects under Physiological Load Conditions, Medical Engineering & Physics, 35, pp.422-432. https://doi.org/10.1016/j.medengphy.2012.06.006
- Yang, S., Leong, K.F., Du, Z. and Chua, C.K., 2001, The Design of Scaffolds for use in Tissue Engineering. Part I. Traditional Factors, Tissue Eng., 7(6), pp.679-689. https://doi.org/10.1089/107632701753337645
- StudyBlue, https://www.studyblue.com/notes/note/n/list-7-1/deck/15834738, 2016.