DOI QR코드

DOI QR Code

A Study on a Ku-Band High Power and High Efficiency Radial Combiner

Ku 대역 고출력 고효율 Radial Combiner에 대한 연구

  • Received : 2016.11.25
  • Accepted : 2017.04.12
  • Published : 2017.05.31

Abstract

We have studied a combiner that can withstand high power while minimizing insertion loss in high frequency band. In particularly, because the output power that can be output per unit elements is much lower in the Ku band and above than in the low frequency band, it is necessary to combine many semiconductor elements in order to make a high power SSPA. A planar combiner such as a microstrip, as the number of elements to be combined increases, the insertion loss increases proportionally, resulting in a reduction in the overall system efficiency and an increase heating value also. The planar combiner also have some problems due to the low power handling rate. To improve these problems, we proposed a Cavity Radial Combiner. A Ku band 16-way Cavity Radial Combiner was fabricated and measured. As a result, it was tested 14dB return loss and over 94.5 % output combining efficiency in design band.

고주파 대역에서 삽입 손실을 최소화 하면서 고출력을 견딜 수 있는 결합기에 대해서 연구하였다. 특히, Ku 대역 이상에서는 단위소자 당 낼 수 있는 출력 전력이 저주파 대역에 비해 매우 낮기 때문에, 고출력 SSPA를 만들기 위해서는 많은 반도체 소자를 결합해야만 한다. 마이크로스트립과 같은 평면 결합기는 결합하는 소자의 개수가 증가하면 비례적으로 삽입 손실이 증가하여 전체 시스템 효율이 떨어지고 발열량도 높아지게 된다. 또한 평면 결합기는 낮은 전력 내구성에 따른 문제도 가지고 있다. 이러한 문제점들을 개선하고자 본 논문에서는 cavity radial combiner를 제안하였다. Ku 대역 16-way cavity radial combiner를 제작하여 측정한 결과, 설계 대역에서 반사손실 14 dB 이하, 94.5 % 이상의 출력결합 효율을 얻었다.

Keywords

References

  1. A. E. Fathy, G. Hegazi, and R. Kazemi, "Overview of radial combiners", IEEE International Microwave Symposium, USA, p. 3, 2015.
  2. K. J. Russell, "Microwave power combining techniques", IEEE Trans. Microw. Theory Tech., vol. MTT-27, no. 5, 1979.
  3. Y. P. Hong, D. F. Kimball, P. M. Asbeck, Jong-Gwan Yook, and L. E. Larson, "Single-ended and differential radial power combiners implemented with a compact broad band probe", IEEE Microwave Theory Tech., vol. 58, no. 6, pp. 1565-1572, 2010. https://doi.org/10.1109/TMTT.2010.2049165
  4. Amir Mortazawi, Bob York, "Quasi-optical and spatial power combining structure", IEEE International Microwave Symposium, USA, pp. 3, 2015.
  5. Robert A. Y., "Some considerations for optimal efficiency and low noise in large power combiners", IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 8, pp. 1477-1482, 2001. https://doi.org/10.1109/22.939929
  6. Mehdi, G. A New Compact Broadband Radial Power Combiner. Berlin University, 2012.
  7. Dirk I. L. de Villiers, Pieter W. van der Walt, and Petrie Meyer, "Design of conical trsnsmission line power combiners using tapered line matcing sections", IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 6, 2008.
  8. Mehdi. G., A New Compact Broadband Radial Power Combiner. Berlin University, 2012.
  9. 최진주, 초고주파 공학 2판, Infinity Books, p. 132, 2007.
  10. K. Song, F. Zhang, S. Hu, and Y. Fan, "Ku-band 200-W pulsed power amplifier based on waveguide spatially power-combining technique for industrial applications", IEEE Transactions on Industrial Electroniss, vol. 61, issue 8, 2013.
  11. Pengcheng, J., "Broad-band high-power amplifier using spatial power-combining technique", University of California. Snata Barbara, 2002.