References
- M. Armand and J.-M. Tarascon, "Building Better Batteries," Nature, 451 [7179] 652-57 (2008). https://doi.org/10.1038/451652a
- Y.-H. Lee, J.-S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T.-S. Kim, J.-Y. Lee, and J. W. Choi, "Wearable Textile Battery Rechargeable by Solar Energy," Nano Lett., 13 [11] 5753-61 (2013). https://doi.org/10.1021/nl403860k
- S.-H. Kim, K.-H. Choi, S.-J. Cho, S. Choi, S. Park, and S.-Y. Lee, "Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics," Nano Lett., 15 [8] 5168-77 (2015). https://doi.org/10.1021/acs.nanolett.5b01394
- E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, "Improved Graphite Anode for Lithium-Ion Batteries Chemically: Bonded Solid Electrolyte Interface and Nanochannel Formation," J. Electrochem. Soc., 143 [1] L4-7 (1996). https://doi.org/10.1149/1.1836372
- Q. Pan, K. Guo, L. Wang, and S. Fang, "Novel Modified Graphite as Anode Material for Lithium-Ion Batteries," J. Electrochem. Soc., 149 [9] A1218-23 (2002). https://doi.org/10.1149/1.1499499
- H. Song, H. X. Wang, Z. Lin, X. Jiang, L. Yu, J. Xu, Z. Yu, X. Zhang, Y. Liu, P. He, L. Pan, Y. Shi, H. Zhou, and K. Chen, "Highly Connected Silicon-Copper Alloy Mixture Nanotubes as High-Rate and Durable Anode Materials for Lithium-Ion Batteries," Adv. Funct. Mater., 26 [4] 524-31 (2016). https://doi.org/10.1002/adfm.201504014
- Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, X. Zheng, F.-F. Cao, and Y.-G. Guo, "Rice Husk-Derived Hierarchical Silicon/Nitrogen-Doped Carbon/Carbon Nanotube Spheres as Low-Cost and High-Capacity Anodes for Lithium-Ion Batteries," Nano Energy, 25 120-27 (2016). https://doi.org/10.1016/j.nanoen.2016.04.043
- D. T. Ngo, H. T. T. Le, C. Kim, J.-Y. Lee, J. G. Fisher, I.-D. Kim, and C.-J. Park, "Mass-Scalable Synthesis of 3D Porous Germanium-Carbon Composite Particles as an Ultra-High Rate Anode for Lithium Ion Batteries," Energy Environ. Sci., 8 [12] 3577-88 (2015). https://doi.org/10.1039/C5EE02183A
-
J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, "In Situ Observation of the Electrochemical Lithiation of a Single
$SnO_2$ Nanowire Electrode," Science, 330 [6010] 1515-20 (2010). https://doi.org/10.1126/science.1195628 - K. C. Klavetter, S. M. Wood, Y.-M. Lin, J. L. Snider, N. C. Davy, A. M. Chockla, D. K. Romanovicz, B. A. Korgel, J.-W. Lee, A. Heller, and C. B. Mullins, "A High-Rate Germanium-Particle Slurry Cast Li-Ion Anode with High Coulombic Efficiency and Long Cycle Life," J. Power Sources, 238 123-36 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.091
- D. T. Ngo, R. S. Kalubarme, H. T. T. Le, J. G. Fisher, C.-N. Park, I.-D. Kim, and C.-J. Park, "Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries," Adv. Funct. Mater., 24 [33] 5291-98 (2014). https://doi.org/10.1002/adfm.201400888
- N. Nitta and G. Yushin, "High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles," Part. Part. Syst. Charact., 31 [3] 317-36 (2014). https://doi.org/10.1002/ppsc.201300231
-
D. T. Ngo, H. T. T. Le, R. S. Kalubarme, J.-Y. Lee, C.-N. Park, and C.-J. Park, "Uniform
$GeO_2$ Dispersed in Nitrogen-Doped Porous Carbon Core-Shell Architecture: An Anode Material for Lithium Ion Batteries," J. Mater. Chem. A, 3 [43] 21722-32 (2015). https://doi.org/10.1039/C5TA05145B -
D. T. Ngo, R. S. Kalubarme, H. T. T. Le, C.-N. Park, and C.-J. Park, "Conducting Additive-Free Amorphous
$GeO_2$ /C Composite as a High Capacity and Long-Term Stability Anode for Lithium Ion Batteries," Nanoscale, 7 [6] 2552-60 (2015). https://doi.org/10.1039/C4NR05541A - C. Gong, D. Ruzmetov, A. Pearse, D. Ma, J. N. Munday, G. Rubloff, A. A. Talin, and M. S. Leite, "Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries," ACS Appl. Mater. Interfaces, 7 [47] 26007-11 (2015). https://doi.org/10.1021/acsami.5b07058
- B. Laforge, L. Levan-Jodin, R. Salot, and A. Billard, "Study of Germanium as Electrode in Thin-Film Battery," J. Electrochem. Soc., 155 [2] A181-88 (2008). https://doi.org/10.1149/1.2820666
- L. Baggetto and P. H. L. Notten, "Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study," J. Electrochem. Soc., 156 [3] A169-75 (2009). https://doi.org/10.1149/1.3055984
Cited by
- The influence of different Si : C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries vol.8, pp.12, 2018, https://doi.org/10.1039/C7RA12027C
- Poly(imide-co-siloxane) as a Thermo-Stable Binder for a Thin Layer Cathode of Thermal Batteries vol.11, pp.11, 2018, https://doi.org/10.3390/en11113154
- Effect of CrN barrier on fuel-clad chemical interaction vol.50, pp.5, 2018, https://doi.org/10.1016/j.net.2018.02.008
- Recent Developments of Nanomaterials and Nanostructures for High‐Rate Lithium Ion Batteries vol.13, pp.20, 2020, https://doi.org/10.1002/cssc.202001562