DOI QR코드

DOI QR Code

Ge-Al Multilayer Thin Film as an Anode for Li-ion Batteries

  • Lee, Jae-Young (Department of Materials Science and Engineering, Chonnam National University) ;
  • Ngo, Duc Tung (Department of Materials Science and Engineering, Chonnam National University) ;
  • Park, Chan-Jin (Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2017.04.12
  • Accepted : 2017.05.17
  • Published : 2017.05.31

Abstract

We design Ge-Al multilayer assemblies as anode materials for Li-ion batteries, in which Ge and Al thin films are alternately deposited by a radio sputtering method. By sandwiching Ge layers between Al layer, the cyclability, rate capability, and capacity of Ge are improved significantly. The success of the Ge-Al multilayer is attributed to the Al films. To maintain the integrity of electrical contact, Al acts as an elastic layer, which can expand or shrink with the Ge film upon lithiation or delithiation. In addition, the presence of the Al film on the surface can prevent direct contact of Ge and electrolyte, thereby reducing the growth of a SEI layer. Importantly, with high electrical and ionic conductivities, the Al film provides efficient electrical and ionic routes for electrons and Li-ions to access the Ge film, promoting a high specific capacity and high rate capability for Ge.

Keywords

References

  1. M. Armand and J.-M. Tarascon, "Building Better Batteries," Nature, 451 [7179] 652-57 (2008). https://doi.org/10.1038/451652a
  2. Y.-H. Lee, J.-S. Kim, J. Noh, I. Lee, H. J. Kim, S. Choi, J. Seo, S. Jeon, T.-S. Kim, J.-Y. Lee, and J. W. Choi, "Wearable Textile Battery Rechargeable by Solar Energy," Nano Lett., 13 [11] 5753-61 (2013). https://doi.org/10.1021/nl403860k
  3. S.-H. Kim, K.-H. Choi, S.-J. Cho, S. Choi, S. Park, and S.-Y. Lee, "Printable Solid-State Lithium-Ion Batteries: A New Route toward Shape-Conformable Power Sources with Aesthetic Versatility for Flexible Electronics," Nano Lett., 15 [8] 5168-77 (2015). https://doi.org/10.1021/acs.nanolett.5b01394
  4. E. Peled, C. Menachem, D. Bar-Tow, and A. Melman, "Improved Graphite Anode for Lithium-Ion Batteries Chemically: Bonded Solid Electrolyte Interface and Nanochannel Formation," J. Electrochem. Soc., 143 [1] L4-7 (1996). https://doi.org/10.1149/1.1836372
  5. Q. Pan, K. Guo, L. Wang, and S. Fang, "Novel Modified Graphite as Anode Material for Lithium-Ion Batteries," J. Electrochem. Soc., 149 [9] A1218-23 (2002). https://doi.org/10.1149/1.1499499
  6. H. Song, H. X. Wang, Z. Lin, X. Jiang, L. Yu, J. Xu, Z. Yu, X. Zhang, Y. Liu, P. He, L. Pan, Y. Shi, H. Zhou, and K. Chen, "Highly Connected Silicon-Copper Alloy Mixture Nanotubes as High-Rate and Durable Anode Materials for Lithium-Ion Batteries," Adv. Funct. Mater., 26 [4] 524-31 (2016). https://doi.org/10.1002/adfm.201504014
  7. Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, X. Zheng, F.-F. Cao, and Y.-G. Guo, "Rice Husk-Derived Hierarchical Silicon/Nitrogen-Doped Carbon/Carbon Nanotube Spheres as Low-Cost and High-Capacity Anodes for Lithium-Ion Batteries," Nano Energy, 25 120-27 (2016). https://doi.org/10.1016/j.nanoen.2016.04.043
  8. D. T. Ngo, H. T. T. Le, C. Kim, J.-Y. Lee, J. G. Fisher, I.-D. Kim, and C.-J. Park, "Mass-Scalable Synthesis of 3D Porous Germanium-Carbon Composite Particles as an Ultra-High Rate Anode for Lithium Ion Batteries," Energy Environ. Sci., 8 [12] 3577-88 (2015). https://doi.org/10.1039/C5EE02183A
  9. J. Y. Huang, L. Zhong, C. M. Wang, J. P. Sullivan, W. Xu, L. Q. Zhang, S. X. Mao, N. S. Hudak, X. H. Liu, A. Subramanian, H. Fan, L. Qi, A. Kushima, and J. Li, "In Situ Observation of the Electrochemical Lithiation of a Single $SnO_2$ Nanowire Electrode," Science, 330 [6010] 1515-20 (2010). https://doi.org/10.1126/science.1195628
  10. K. C. Klavetter, S. M. Wood, Y.-M. Lin, J. L. Snider, N. C. Davy, A. M. Chockla, D. K. Romanovicz, B. A. Korgel, J.-W. Lee, A. Heller, and C. B. Mullins, "A High-Rate Germanium-Particle Slurry Cast Li-Ion Anode with High Coulombic Efficiency and Long Cycle Life," J. Power Sources, 238 123-36 (2013). https://doi.org/10.1016/j.jpowsour.2013.02.091
  11. D. T. Ngo, R. S. Kalubarme, H. T. T. Le, J. G. Fisher, C.-N. Park, I.-D. Kim, and C.-J. Park, "Carbon-Interconnected Ge Nanocrystals as an Anode with Ultra-Long-Term Cyclability for Lithium Ion Batteries," Adv. Funct. Mater., 24 [33] 5291-98 (2014). https://doi.org/10.1002/adfm.201400888
  12. N. Nitta and G. Yushin, "High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles," Part. Part. Syst. Charact., 31 [3] 317-36 (2014). https://doi.org/10.1002/ppsc.201300231
  13. D. T. Ngo, H. T. T. Le, R. S. Kalubarme, J.-Y. Lee, C.-N. Park, and C.-J. Park, "Uniform $GeO_2$ Dispersed in Nitrogen-Doped Porous Carbon Core-Shell Architecture: An Anode Material for Lithium Ion Batteries," J. Mater. Chem. A, 3 [43] 21722-32 (2015). https://doi.org/10.1039/C5TA05145B
  14. D. T. Ngo, R. S. Kalubarme, H. T. T. Le, C.-N. Park, and C.-J. Park, "Conducting Additive-Free Amorphous $GeO_2$/C Composite as a High Capacity and Long-Term Stability Anode for Lithium Ion Batteries," Nanoscale, 7 [6] 2552-60 (2015). https://doi.org/10.1039/C4NR05541A
  15. C. Gong, D. Ruzmetov, A. Pearse, D. Ma, J. N. Munday, G. Rubloff, A. A. Talin, and M. S. Leite, "Surface/Interface Effects on High-Performance Thin-Film All-Solid-State Li-Ion Batteries," ACS Appl. Mater. Interfaces, 7 [47] 26007-11 (2015). https://doi.org/10.1021/acsami.5b07058
  16. B. Laforge, L. Levan-Jodin, R. Salot, and A. Billard, "Study of Germanium as Electrode in Thin-Film Battery," J. Electrochem. Soc., 155 [2] A181-88 (2008). https://doi.org/10.1149/1.2820666
  17. L. Baggetto and P. H. L. Notten, "Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study," J. Electrochem. Soc., 156 [3] A169-75 (2009). https://doi.org/10.1149/1.3055984

Cited by

  1. The influence of different Si : C ratios on the electrochemical performance of silicon/carbon layered film anodes for lithium-ion batteries vol.8, pp.12, 2018, https://doi.org/10.1039/C7RA12027C
  2. Poly(imide-co-siloxane) as a Thermo-Stable Binder for a Thin Layer Cathode of Thermal Batteries vol.11, pp.11, 2018, https://doi.org/10.3390/en11113154
  3. Effect of CrN barrier on fuel-clad chemical interaction vol.50, pp.5, 2018, https://doi.org/10.1016/j.net.2018.02.008
  4. Recent Developments of Nanomaterials and Nanostructures for High‐Rate Lithium Ion Batteries vol.13, pp.20, 2020, https://doi.org/10.1002/cssc.202001562